Person:
UrsĂșa Rubio, Alfredo

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

UrsĂșa Rubio

First Name

Alfredo

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

ORCID

0000-0001-6240-8659

person.page.upna

3245

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    Experimental assessment of first- and second-life electric vehicle batteries: performance, capacity dispersion, and aging
    (IEEE, 2021) Braco Sola, Elisa; San MartĂ­n Biurrun, Idoia; Berrueta Irigoyen, Alberto; Sanchis GĂșrpide, Pablo; UrsĂșa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Universidad PĂșblica de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua
    Nowadays, the reuse of electric vehicle batteries is considered to be a feasible alternative to recycling, as it allows them to benefit from their remaining energy capacity and to enlarge their lifetime. Stationary applications, such as self-consumption or off-grid systems support, are examples of second-life (SL) uses for retired batteries. However, reused modules that compose these batteries have heterogeneous properties, which limit their performance. This article aims to assess the influence of degradation in modules from electric vehicles, covering three main aspects: performance, capacity dispersion, and extended SL behavior. First, a complete characterization of new and reused modules is carried out, considering three temperatures and three discharge rates. In the second stage, intra- and intermodule capacity dispersions are evaluated with new and reused samples. Finally, the behavior during SL is also analyzed, through an accelerated cycling test so that the evolution of capacity and dispersion are assessed. Experimental results show that the performance of reused modules is especially undermined at low temperatures and high current rates, as well as in advanced stages of aging. The intramodule dispersion is found to be similar in reused and new samples, while the intermodule differences are nearly four times greater in SL.
  • PublicationOpen Access
    Impact of micro-cycles on the lifetime of lithium-ion batteries: an experimental study
    (Elsevier, 2022) Soto Cabria, AdriĂĄn; Berrueta Irigoyen, Alberto; Mateos Inza, Miren; Sanchis GĂșrpide, Pablo; UrsĂșa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Universidad PĂșblica de Navarra / Nafarroako Unibertsitate Publikoa Gobierno de Navarra / Nafarroako Gobernua
    Experimental aging studies are commonly conducted on lithium-ion batteries by full charge and discharge cycles. However, such profiles may differ from the actual operation of batteries in electric vehicles and stationary applications, where they are subjected to different partial charges and discharges. These partial cycles, which take place during a main charge or discharge process, are called micro-cycles if their depth of discharge is <2 %. A number of authors have pointed out the relevance of the time resolution to estimate the energy throughput of a battery due to these micro-cycles in applications such as renewable microgrids. However, to the best of our knowledge, there are no experimental studies in the literature that assess the impact of these micro-cycles on battery degradation. In this article, the impact of micro-cycles on the loss of performance of a lithium-ion battery is experimentally studied. The results show that micro-cycles have a negligible, or even positive effect on the aging of lithium-ion cells compared to the aging caused by full cycles. In fact, if charge throughput or equivalent full cycles are used to measure the use of a battery, then cells subjected to micro-cycles exhibit a 50 % extended lifetime compared to cells only subjected to full cycles. More precisely, cells including micro-cycles with depth of discharge of 0.5 % lasted for nearly 3000 equivalent full cycles, whereas cells aged under standard deep cycles lasted for no >1500. Nevertheless, if the number of deep cycles, disregarding micro-cycles, is the unit to measure battery use, then the degradation of cells with and without micro-cycles is similar. Based on this result, the number of cycles can be identified as a more accurate variable to measure the use of a cell, in comparison to charge throughput.
  • PublicationOpen Access
    On the requirements of the power converter for second-life lithium-ion batteries
    (IEEE, 2019) Berrueta Irigoyen, Alberto; San MartĂ­n Biurrun, Idoia; Pascual Miqueleiz, Julio MarĂ­a; Sanchis GĂșrpide, Pablo; UrsĂșa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Gobierno de Navarra / Nafarroako Gobernua
    The use of lithium-ion batteries is increasing year after year, especially in the automotive sector. Given the high requirements of electric vehicles, their energy storage systems are discarded when they still have around 70% of its initial capacity. These discarded batteries are being studied as a low-price option for stationary systems, mostly related to renewable energy generation, with lower battery requirements. However, the increasing dispersion of cell capacity detailed in this contribution limits the use of second-life cells if regular battery management systems and power converters. We present in this contribution an experimental comparison of the capacity dispersion between fresh and second-life cells, and detail the relationship between the capacity dispersion and the required BMS functionality. Furthermore, we include the ageing phenomena in the analysis by means of experimental ageing results, given that the capacity dispersion is enlarged as the battery ages. After this, we use this data to quantify advantages and disadvantages of a combined BMS and power converter, based on a multilevel topology, compared to a conventional BMS. The most relevant result, when a 55-cell battery is analysed, is a 65% increase in capacity during its whole second life if the BMS and power converter are combined by means of a multilevel topology. The increased level of complexity required by the combined BMS-power converter architecture is analysed in this contribution, providing a convenient tool for the selection of the most suitable option for each application.
  • PublicationOpen Access
    Experimental assessment of cycling ageing of lithium-ion second-life batteries from electric vehicles
    (Elsevier, 2020) Braco Sola, Elisa; San MartĂ­n Biurrun, Idoia; Berrueta Irigoyen, Alberto; Sanchis GĂșrpide, Pablo; UrsĂșa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Gobierno de Navarra / Nafarroako Gobernua, 0011–1411–2018–000029 GERA; Universidad PĂșblica de Navarra / Nafarroako Unibertsitate Publikoa, ReBMS PJUPNA1904
    The reutilization of batteries from electric vehicles allows to benefit from their remaining energy capacity and to increase their lifespan. The applications considered for the second life of these batteries are less demanding than electric vehicles regarding power and energy density. However, there is still some uncertainty regarding the technical and economic viability of these systems. In this context, the study of the ageing and lifetime of reused batteries is key to contribute to their development. This paper assesses the experimental cycle ageing of lithium-ion modules from different Nissan Leaf through accelerated cycling tests on their second life. The evolution of the internal parameters during ageing and the correlation between them are shown, including the analysis of best fitting curves. In addition, a second-life end-of-life criterion is proposed, based on capacity and internal resistance measurements during cells ageing, which can be applied to real application in order to prevent safety issues. By estimating future values from degradation trends and checking latter measurements, the ageing knee is identified. Results show that the modules operate for at least 2033 equivalent full cycles before reaching their ageing knee. This would mean more than 5 years of operation in a real second-life application, such as a photovoltaic self-consumption installation with daily cycling. Moreover, it is shown that a traditional cell characterisation based on capacity and internal resistance measurements is not enough to predict the durability of a cell during its second life.