López Iturri, Peio

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

López Iturri

First Name

Peio

person.page.departamento

Ciencias

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Analysis of bluetooth-based wireless sensor networks performance in hospital environments
    (MDPI, 2016) López Iturri, Peio; Led Ramos, Santiago; Aguirre Gallego, Erik; Azpilicueta Fernández de las Heras, Leyre; Serrano Arriezu, Luis Javier; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this work, a method to analyze the performance of Bluetooth-based Wireless Sensor Networks (WSN) deployed within hospital environments is presented. Due to the complexity that this kind of scenarios exhibit in terms of radio propagation and coexistence with other wireless communication systems and other potential interference sources, the deployment of WSNs becomes a complex task which requires an in-depth radio planning analysis. For that purpose, simulation results obtained with the aid of an in-house developed 3D Ray Launching code are presented. The scenarios under analysis are located at the Hospital of Navarre Complex (HNC), in the city of Pamplona. As hospitals have a wide variety of scenarios, the analysis has been carried out in different zones such as Boxes, where different medical sensors based on Bluetooth communication protocol have been deployed. The simulation results obtained have been validated with measurements within the scenario under analysis, exhibiting Bluetooth-based WSNs performance within hospital environments in terms of coverage/capacity relations. The proposed methodology can aid in obtaining optimal network configuration and hence performance of Bluetooth-based WSNs within medical/health service provision environments.
  • PublicationOpen Access
    Implementation and analysis of ISM 2.4 GHz wireless sensor network systems in judo training venues
    (MDPI, 2016) López Iturri, Peio; Aguirre Gallego, Erik; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    In this work, the performance of ISM 2.4 GHz Wireless Sensor Networks (WSNs) deployed in judo training venues is analyzed. Judo is a very popular martial art, which is practiced by thousands of people not only at the competition level, but also as part of physical education programs at different school levels. There is a great variety of judo training venues, and each one has specific morphological aspects, making them unique scenarios in terms of radio propagation due to the presence of furniture, columns, equipment and the presence of human beings, which is a major issue as the person density within this kind of scenarios could be high. Another key aspect is the electromagnetic interference created by other wireless systems, such as WiFi or other WSNs, which make the radio planning a complex task in terms of coexistence. In order to analyze the impact of these features on the radio propagation and the performance of WSNs, an in-house developed 3D ray launching algorithm has been used. The obtained simulation results have been validated with a measurement campaign carried out in the sport facilities of the Public University of Navarre. The analysis is completed with the inclusion of an application designed to monitor biological constants of judokas, aimed to improve their training procedures. The application, that allows the simultaneous monitoring of multiple judokas (collective workouts) minimizing the efforts of the coach and medical supervisor, is based on commercial off-the-shelf products. The presented assessment of the presence of interfering wireless systems and the presence of human beings within judo training venues shows that an in-depth radio planning is required as these issues can have a great impact in the overall performance of a ISM 2.4 GHz WSN, affecting negatively the potential applications supported by wireless channel.