López Iturri, Peio
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
López Iturri
First Name
Peio
person.page.departamento
Ciencias
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
25 results
Search Results
Now showing 1 - 10 of 25
Publication Open Access Design and empirical validation of a LoRaWAN IoT Smart Irrigation System(MDPI, 2020) Fraga Lamas, Paula; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Falcone Lanas, Francisco; Fernández Caramés, Tiago M.; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenIn some parts of the world, climate change has led to periods of drought that require managing efficiently the scarce water and energy resources. This paper proposes an IoT smart irrigation system specifically designed for urban areas where remote IoT devices have no direct access to the Internet or to the electrical grid, and where wireless communications are difficult due to the existence of long distances and multiple obstacles. To tackle such issues, this paper proposes a LoRaWAN-based architecture that provides long distance and communications with reduced power consumption. Specifically, the proposed system consists of IoT nodes that collect sensor data and send them to local fog computing nodes or to a remote cloud, which determine an irrigation schedule that considers factors such as the weather forecast or the moist detected by nearby nodes. It is essential to deploy the IoT nodes in locations within the provided coverage range and that guarantee good speed rates and reduced energy consumption. Due to this reason, this paper describes the use of an in-house 3D-ray launching radio-planning tool to determine the best locations for IoT nodes on a real medium-scale scenario (a university campus) that was modeled with precision, including obstacles such as buildings, vegetation, or vehicles. The obtained simulation results were compared with empirical measurements to assess the operating conditions and the radio planning tool accuracy. Thus, it is possible to optimize the wireless network topology and the overall performance of the network in terms of coverage, cost, and energy consumption.Publication Open Access Digital twin modelling of open category UAV radio communications: a case study(Elsevier, 2024) Aláez Gómez, Daniel; López Iturri, Peio; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Villadangos Alonso, Jesús; Astrain Escola, José Javier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe modeling of radio links plays a crucial role in achieving mission success of unmanned aerial vehicles (UAVs). By simulating and analyzing communication performance, operators can anticipate and address potential challenges. In this paper, we propose a full-featured UAV software-in-the-loop digital twin (SITL-DT) for a heavy-lifting hexacopter that integrates a radio link module based on an experimental path loss model for ‘Open’ category Visual Line of Sight (VLOS) conditions and drone-antenna radiation diagrams obtained via electromagnetic simulation. The main purpose of integrating and simulating a radio link is to characterize when the communication link can be conflicting due to distance, the attitude of the aircraft relative to the pilot, and other phenomena. The system architecture, including the communications module, is implemented and validated based upon experimental flight data.Publication Open Access Spatial V2X traffic density channel characterization for urban environments(IEEE, 2021) Granda, Fausto; Azpilicueta Fernández de las Heras, Leyre; Celaya Echarri, Mikel; López Iturri, Peio; Vargas Rosales, César; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenIn this work, Vehicle-to-everything (V2X) wireless communications performance is analyzed, in order to account for inherent scenario complexity, in the deployment phase of wireless systems towards the implementation of a Context Aware environment. An urban environment has been simulated by means of an in-house three-dimensional (3D) Ray Launching algorithm, coupled with a microscopic vehicular movement simulator, accounting for embedded urban elements as well as variable traffic densities within the complex environment. Large-scale and small-scale results are presented, as well as statistical analysis of the impact of different traffic densities. A campaign of measurements in the same real scenario has been performed, showing good agreement with wireless channel estimations for the considered frequency. These results can aid in V2X deployment configurations in urban environments, in order to minimize power consumption, optimize interference levels and increase overall system performance.Publication Open Access Enabling anything to anything connectivity within urban environments towards cognitive frameworks(IEEE, 2024-08-23) Picallo Guembe, Imanol; Klaina, Hicham; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Celaya Echarri, Mikel; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ciencias; Zientziak; Institute of Smart Cities - ISCThe evolution from Smart Cities towards Cognitive Cities is enabled, among others, by the use of flexible and adaptive communication systems, capable of providing high levels of interactivity among multiple systems and users. In this work, wireless connectivity in full volumetric scale is analyzed, in order to provide wireless links between any device/user within the scenario, spanning to different applications from vehicular connectivity at different levels or infrastructure related communications, among others.Publication Open Access Design, implementation, and empirical validation of an IoT smart irrigation system for fog computing applications based on Lora and Lorawan sensor nodes(MDPI, 2020) Froiz Míguez, Iván; López Iturri, Peio; Fraga Lamas, Paula; Celaya Echarri, Mikel; Blanco Novoa, Óscar; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Fernández Caramés, Tiago M.; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónClimate change is driving new solutions to manage water more efficiently. Such solutions involve the development of smart irrigation systems where Internet of Things (IoT) nodes are deployed throughout large areas. In addition, in the mentioned areas, wireless communications can be difficult due to the presence of obstacles and metallic objects that block electromagnetic wave propagation totally or partially. This article details the development of a smart irrigation system able to cover large urban areas thanks to the use of Low-Power Wide-Area Network (LPWAN) sensor nodes based on LoRa and LoRaWAN. IoT nodes collect soil temperature/moisture and air temperature data, and control water supply autonomously, either by making use of fog computing gateways or by relying on remote commands sent from a cloud. Since the selection of IoT node and gateway locations is essential to have good connectivity and to reduce energy consumption, this article uses an in-house 3D-ray launching radio-planning tool to determine the best locations in real scenarios. Specifically, this paper provides details on the modeling of a university campus, which includes elements like buildings, roads, green areas, or vehicles. In such a scenario, simulations and empirical measurements were performed for two different testbeds: a LoRaWAN testbed that operates at 868 MHz and a testbed based on LoRa with 433 MHz transceivers. All the measurements agree with the simulation results, showing the impact of shadowing effects and material features (e.g., permittivity, conductivity) in the electromagnetic propagation of near-ground and underground LoRaWAN communications. Higher RF power levels are observed for 433 MHz due to the higher transmitted power level and the lower radio propagation losses, and even in the worst gateway location, the received power level is higher than the sensitivity threshold (–148 dBm). Regarding water consumption, the provided estimations indicate that the proposed smart irrigation system is able to reduce roughly 23% of the amount of used water just by considering weather forecasts. The obtained results provide useful guidelines for future smart irrigation developers and show the radio planning tool accuracy, which allows for optimizing the sensor network topology and the overall performance of the network in terms of coverage, cost, and energy consumption.Publication Open Access Wireless information power transfer assessment by deterministic radio propagation estimations in smart city contexts(IEEE, 2025-03-12) Picallo Guembe, Imanol; López Iturri, Peio; Klaina, Hicham; Celaya Echarri, Mikel; Rodríguez Corbo, Fidel Alejandro; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCThe development of context aware environments, such as those given in the framework of Smart Cities and Smart Regions require the use of ubiquitous connectivity and more recently, energy availability for a wide variety of Internet of Things based applications. In this work, estimations of wireless channel distributions for coverage/capacity as well as for energy availability will be presented, for outdoor as well as indoor scenarios with the aid of deterministic inhouse developed simulation tool. Volumetric assessment can be obtained, aiding in the radio network planning process, as well as in the feasibility of electromagnetic based energy harvesting solutions for Internet of Things based applications.Publication Open Access Analysis of inter-train wireless connectivity to enable context aware rail applications(Springer, 2021) Picallo Guembe, Imanol; López Iturri, Peio; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Falcone Lanas, Francisco; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenTrain systems are fundamental players within multi-modal transit systems, providing efficient transportation means for passengers and goods. In the framework of Smart Cities and Smart Regions, providing context aware environments is compulsory in order to take full advantage of system integration, with updated information exchange among Intelligent Transportation system deployments. In this work, inter-train wireless system connectivity is analyzed with the aid of deterministic 3D wireless channel approximations, with the aim of obtaining estimations of frequency/power volumetric channel distributions, as well as time domain characteristics, for different frequency bands. The results show the impact of the complex inter-train scenario conditions, which require precise channel modelling in order to perform optimal network design, planning and optimization tasks.Publication Open Access Basketball player on-body biophysical and environmental parameter monitoring based on wireless sensor network integration(IEEE, 2021) Picallo Guembe, Imanol; López Iturri, Peio; Astrain Escola, José Javier; Aguirre Gallego, Erik; Azpilicueta Fernández de las Heras, Leyre; Celaya Echarri, Mikel; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Matematika eta Informatika Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Matemática e Informática; Ingeniería Eléctrica, Electrónica y de ComunicaciónSport activities have benefited in recent years from the progressive adoption of different technological assets in order to improve individual as well as group training, collect different statistics or enhance the spectator experiences. The progressive adoption of Internet of Things paradigms can also be considered within the scope of sport activities, providing high levels of user interactivity as well as enabling cloud-based data storage and processing. In this work, a system for monitoring biophysical, kinematic and environmental parameters within the development of basketball training is presented. A set of on-body nodes with multiple sensors and wireless body area network capabilities have been designed, implemented and tested under real training conditions during a match. Wireless channel analysis results have been obtained with the aid of in house implemented deterministic 3D ray launching algorithm, providing accurate coverage/capacity estimations in relation with human body consideration in the field as well as in the stadium. Measurement results give relevant information in relation with individual player characteristics as well as with team characteristics, providing a flexible tool to improve training development of basketball.Publication Open Access Building decentralized fog computing-based smart parking systems: from deterministic propagation modeling to practical deployment(IEEE, 2020) Celaya Echarri, Mikel; Froiz Míguez, Iván; Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónThe traditional process of finding a vacant parking slot is often inefficient: it increases driving time, traffic congestion, fuel consumption and exhaust emissions. To address such problems, smart parking systems have been proposed to help drivers to find available parking slots faster using latest sensing and communications technologies. However, the deployment of the communications infrastructure of a smart parking is not straightforward due to multiple factors that may affect wireless propagation. Moreover, a smart parking system needs to provide not only accurate information on available spots, but also fast responses while guaranteeing the system availability even in the case of lacking connectivity. This article describes the development of a decentralized low-latency smart parking system: from its conception, design and theoretical simulation, to its empirical validation. Thus, this work first characterizes a real-world scenario and proposes a fog computing and Internet of Things (IoT) based communications architecture to provide smart parking services. Next, a thorough analysis on the wireless channel properties is carried out by means of an in-house developed deterministic 3D-Ray Launching (3D-RL) tool. The obtained results are validated through a real-world measurement campaign and then the communications architecture is implemented by using ZigBee sensor nodes. The implemented architecture also makes use of Bluetooth Low Energy beacons, an Android app, a decentralized database and fog computing gateways, whose performance is evaluated in terms of response latency and processing rate. Results show that the proposed system is able to deliver information to the drivers fast, with no need for relying on remote servers. As a consequence, the presented development methodology and communications evaluation tool can be useful for future smart parking developers, which can determine the optimal locations of the wireless transceivers during the simulation stage and then deploy a system that can provide fast responses and decentralized services.Publication Open Access 5G spatial modeling of personal RF-EMF assessment within aircrafts cabin environments(IEEE, 2022) Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Rodríguez Corbo, Fidel Alejandro; López Iturri, Peio; Shubair, Raed M.; Ramos González, Victoria; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónRecently, new wireless communication systems within aircrafts cabins have drawn higher attention due to the growing demand of passenger services and applications and their corresponding requirements and constraints. In this regard, the fifth generation (5G) of wireless communication becomes an attractive and promising alternative to enable aircraft passengers' comfort and entertainment along the flight, considering its potential benefits in term of high data transfers and low latencies. Nevertheless, general population concern about radio frequency electromagnetic fields (RF-EMF) safety in general and, in particular to the environmental exposure at which we are all exposed in these flights, increases at the same time. Thus, in this work, we present an experimental campaign of measurements for current passengers' environmental exposure assessment, performed in different real generalizable type of flights and aircrafts' cabins, in order to provide current RF-EMF exposure insight within these complex heterogeneous environments. In addition, worst-case uplink 5G scenarios, where all 5G cellular handsets of the passengers operate at the same time, have been simulated by means of an in-house developed 3D Ray Launching (3D-RL) deterministic technique. Before takeoff and after landing, critical scenarios with the aircrafts' doors closed have been selected and assessed considering different types of modeled aircrafts full of passengers, considering 5G frequency range 2 (5G-FR2) operating links. The obtained results show that the operation frequency and the morphology and topology of the aircraft cabin have a great influence in the environmental RF-EMF passengers' spatial distribution and overall exposure, but not exceeding, even in worst case conditions, the international established regulatory limits. © 2022 IEEE.
- «
- 1 (current)
- 2
- 3
- »