López Iturri, Peio

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

López Iturri

First Name

Peio

person.page.departamento

Ciencias

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 71
  • PublicationOpen Access
    Analysis and implementation of wireless communications systems and IoT with human body interference in inhomogeneous environments
    (2021) Picallo Guembe, Imanol; Klaina, Hicham; Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    The Integration of wireless communication systems is one of the main drivers of the development of the future connected society. However, this will cause challenges due to the non-static channel effect and interference impact. For this reason, a research work is proposed that enables to obtain optimal node location in relation to radio planning tasks (coverage/capacity analysis, number of lost packets, devices’ consumption...), as well as to characterize the environments considering obstacles and human body being, in terms of the received power level in the complete simulation volume and at the time domain level. This will help derive wireless channel models taking into account real channel variations to deploy a Wireless Sensor Network (WSN) and reduce the impact on wireless systems performance.
  • PublicationOpen Access
    Analysis of inter-train wireless connectivity to enable context aware rail applications
    (Springer, 2021) Picallo Guembe, Imanol; López Iturri, Peio; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Falcone Lanas, Francisco; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Train systems are fundamental players within multi-modal transit systems, providing efficient transportation means for passengers and goods. In the framework of Smart Cities and Smart Regions, providing context aware environments is compulsory in order to take full advantage of system integration, with updated information exchange among Intelligent Transportation system deployments. In this work, inter-train wireless system connectivity is analyzed with the aid of deterministic 3D wireless channel approximations, with the aim of obtaining estimations of frequency/power volumetric channel distributions, as well as time domain characteristics, for different frequency bands. The results show the impact of the complex inter-train scenario conditions, which require precise channel modelling in order to perform optimal network design, planning and optimization tasks.
  • PublicationOpen Access
    Impact of body wearable sensor positions on UWB ranging
    (IEEE, 2019) Otim, Timothy; Bahillo, Alfonso; Díez, Luis E.; López Iturri, Peio; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In recent years, Ultrawideband (UWB) has become a very popular technology for time of flight (TOF) based localization and tracking applications but its human body interactions have not been studied yet extensively. Most UWB systems already proposed for pedestrian ranging have only been individually evaluated for a particular wearable sensor position. It is observed that wearable sensors mounted on or close to the human body can raise line-of-sight (LOS), quasi-line-of-sight (QLOS), and non-line-of-sight (NLOS) scenarios leading to significant ranging errors depending on the relative heading angle (RHA) between the pedestrian, wearable sensor, and anchors. In this paper, it is presented that not only does the ranging error depend on the RHA, but on the position of the wearable sensors on the pedestrian. Seven wearable sensor locations namely, fore-head, hand, chest, wrist, arm, thigh and ankle are evaluated and a fair comparison is made through extensive measurements and experiments in a multipath environment. Using the direction in which the pedestrian is facing, the RHA between the pedestrian, wearable sensor, and anchors is computed. For each wearable sensor location, an UWB ranging error model with respect to the human body shadowing effect is proposed. A final conclusion is drawn that among the aforementioned wearable locations, the fore-head provides the best range estimate because it is able to set low mean range errors of about 20 cm in multipath conditions. The fore-head's performance is followed by the hand, wrist, ankle, arm, thigh, and chest in that order.
  • PublicationOpen Access
    Spatial characterization of radio propagation channel in urban vehicle-to-infrastructure environments to support WSNs deployment
    (MDPI, 2017) Granda, Fausto; Azpilicueta Fernández de las Heras, Leyre; Vargas Rosales, César; López Iturri, Peio; Aguirre Gallego, Erik; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa eta Elektronikoa; Matematika eta Informatika Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Ingeniería Matemática e Informática
    Vehicular ad hoc Networks (VANETs) enable vehicles to communicate with each other as well as with roadside units (RSUs). Although there is a significant research effort in radio channel modeling focused on vehicle-to-vehicle (V2V), not much work has been done for vehicle-to-infrastructure (V2I) using 3D ray-tracing tools. This work evaluates some important parameters of a V2I wireless channel link such as large-scale path loss and multipath metrics in a typical urban scenario using a deterministic simulation model based on an in-house 3D Ray-Launching (3D-RL) algorithm at 5.9 GHz. Results show the high impact that the spatial distance; link frequency; placement of RSUs; and factors such as roundabout, geometry and relative position of the obstacles have in V2I propagation channel. A detailed spatial path loss characterization of the V2I channel along the streets and avenues is presented. The 3D-RL results show high accuracy when compared with measurements, and represent more reliably the propagation phenomena when compared with analytical path loss models. Performance metrics for a real test scenario implemented with a VANET wireless sensor network implemented ad-hoc are also described. These results constitute a starting point in the design phase of Wireless Sensor Networks (WSNs) radio-planning in the urban V2I deployment in terms of coverage.
  • PublicationOpen Access
    Digital twin modelling of open category UAV radio communications: a case study
    (Elsevier, 2024) Aláez Gómez, Daniel; López Iturri, Peio; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Villadangos Alonso, Jesús; Astrain Escola, José Javier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The modeling of radio links plays a crucial role in achieving mission success of unmanned aerial vehicles (UAVs). By simulating and analyzing communication performance, operators can anticipate and address potential challenges. In this paper, we propose a full-featured UAV software-in-the-loop digital twin (SITL-DT) for a heavy-lifting hexacopter that integrates a radio link module based on an experimental path loss model for ‘Open’ category Visual Line of Sight (VLOS) conditions and drone-antenna radiation diagrams obtained via electromagnetic simulation. The main purpose of integrating and simulating a radio link is to characterize when the communication link can be conflicting due to distance, the attitude of the aircraft relative to the pilot, and other phenomena. The system architecture, including the communications module, is implemented and validated based upon experimental flight data.
  • PublicationOpen Access
    Characterization and consideration of topological impact of wireless propagation in a commercial aircraft environment [wireless corner]
    (IEEE, 2013) Rajo-Iglesias, Eva; Aguirre Gallego, Erik; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Arpón Díaz-Aldagalán, Javier; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Wireless systems are gaining a relevant role for multiple communication tasks within commercial aircrafts. In this work, wireless propagation in an indoor commercial airplane cabin will be analyzed. The impact of indoor elements, such as passenger seats, luggage compartments and a dual deck structure will be considered, with the aid of in-house implemented 3D ray launching code. Multipath propagation plays a relevant role, given by the time domain characteristics obtained by spatially dependent power delay profiles and delay spread. The use of deterministic techniques in order to consider the inherent complexity of the airplane cabin can aid in wireless system planning in order to increase overall system capacity whilst reducing power consumption.
  • PublicationOpen Access
    Deterministic and empirical approach for millimeter-wave complex outdoor smart parking solution deployments
    (MDPI, 2021) Rodríguez Corbo, Fidel Alejandro; Azpilicueta Fernández de las Heras, Leyre; Celaya Echarri, Mikel; López Iturri, Peio; Alejos, Ana V.; Shubair, Raed M.; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    The characterization of different vegetation/vehicle densities and their corresponding effects on large-scale channel parameters such as path loss can provide important information during the deployment of wireless communications systems under outdoor conditions. In this work, a deterministic analysis based on ray-launching (RL) simulation and empirical measurements for vehicle-to-infrastructure (V2I) communications for outdoor parking environments and smart parking solutions is presented. The study was carried out at a frequency of 28 GHz using directional antennas, with the transmitter raised above ground level under realistic use case conditions. Different radio channel impairments were weighed in, considering the progressive effect of first, the density of an incremental obstructed barrier of trees, and the effect of different parked vehicle densities within the parking lot. On the basis of these scenarios, large-scale parameters and temporal dispersion characteristics were obtained, and the effect of vegetation/vehicle density changes was assessed. The characterization of propagation impairments that different vegetation/vehicle densities can impose onto the wireless radio channel in the millimeter frequency range was performed. Finally, the results obtained in this research can aid communication deployment in outdoor parking conditions.
  • PublicationOpen Access
    Performance evaluation and interference characterization of wireless sensor networks for complex high-node density scenarios
    (MDPI, 2019) Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Aguirre Gallego, Erik; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    The uncontainable future development of smart regions, as a set of smart cities’ networks assembled, is directly associated with a growing demand of full interactive and connected ubiquitous smart environments. To achieve this global connection goal, large numbers of transceivers and multiple wireless systems will be involved to provide user services and applications anytime and anyplace, regardless the devices, networks, or systems they use. Adequate, efficient and effective radio wave propagation tools, methodologies, and analyses in complex indoor and outdoor environments are crucially required to prevent communication limitations such as coverage, capacity, speed, or channel interferences due to high-node density or channel restrictions. In this work, radio wave propagation characterization in an urban indoor and outdoor wireless sensor network environment has been assessed, at ISM 2.4 GHz and 5 GHz frequency bands. The selected scenario is an auditorium placed in an open free city area surrounded by inhomogeneous vegetation. User density within the scenario, in terms of inherent transceivers density, poses challenges in overall system operation, given by multiple node operation which increases overall interference levels. By means of an in-house developed 3D ray launching (3D-RL) algorithm with hybrid code operation, the impact of variable density wireless sensor network operation is presented, providing coverage/capacity estimations, interference estimation, device level performance and precise characterization of multipath propagation components in terms of received power levels and time domain characteristics. This analysis and the proposed simulation methodology, can lead in an adequate interference characterization extensible to a wide range of scenarios, considering conventional transceivers as well as wearables, which provide suitable information for the overall network performance in crowded indoor and outdoor complex heterogeneous environments.
  • PublicationOpen Access
    Spatial V2X traffic density channel characterization for urban environments
    (IEEE, 2021) Granda, Fausto; Azpilicueta Fernández de las Heras, Leyre; Celaya Echarri, Mikel; López Iturri, Peio; Vargas Rosales, César; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this work, Vehicle-to-everything (V2X) wireless communications performance is analyzed, in order to account for inherent scenario complexity, in the deployment phase of wireless systems towards the implementation of a Context Aware environment. An urban environment has been simulated by means of an in-house three-dimensional (3D) Ray Launching algorithm, coupled with a microscopic vehicular movement simulator, accounting for embedded urban elements as well as variable traffic densities within the complex environment. Large-scale and small-scale results are presented, as well as statistical analysis of the impact of different traffic densities. A campaign of measurements in the same real scenario has been performed, showing good agreement with wireless channel estimations for the considered frequency. These results can aid in V2X deployment configurations in urban environments, in order to minimize power consumption, optimize interference levels and increase overall system performance.
  • PublicationOpen Access
    Enabling customizable services for multimodal smart mobility with city-platforms
    (IEEE, 2021) Al-Rahamneh, Anas; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Klaina, Hicham; Picallo Guembe, Imanol; López Iturri, Peio; Falcone Lanas, Francisco; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua
    In the last decades, the cities' capacity for generating digital information has grown exponentially. In this context, the successful implementation of smart cities' concept depends on the current possibility of handling the significant volumes of sensed data. This is particularly notorious in the case of urban mobility. Researchers in the field of urban planning have shown a great interest in urban mobility problems, proposing different route recommendation services towards making it easier and safer to move around the city. This paper addresses the development of an urban data platform and how to obtain and integrate information from sensors and other data sources to provide aggregated and intelligent views of raw data to support urban mobility. With the aim of evaluating the efficiency of the developed platform, we present an intelligent urban mobility solution, where the context-awareness, user preferences, and environmental factors play a significant role in the process of route planning. Finally, our work provides an experiment to assess different long-range wireless communication technologies to enable its implementation within an urban environment.