López Iturri, Peio
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
López Iturri
First Name
Peio
person.page.departamento
Ciencias
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
1 results
Search Results
Now showing 1 - 1 of 1
Publication Open Access Design and empirical validation of a Bluetooth 5 fog computing based industrial CPS architecture for intelligent industry 4.0 shipyard workshops(IEEE, 2020) Fraga Lamas, Paula; López Iturri, Peio; Celaya Echarri, Mikel; Blanco Novoa, Óscar; Azpilicueta Fernández de las Heras, Leyre; Varela Barbeito, José; Falcone Lanas, Francisco; Fernández Caramés, Tiago M.; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónNavantia, one of largest European shipbuilders, is creating a fog computing based Industrial Cyber-Physical System (ICPS) for monitoring in real-time its pipe workshops in order to track pipes and keep their traceability. The deployment of the ICPS is a unique industrial challenge in terms of communications, since in a pipe workshop there is a significant number of metallic objects with heterogeneous typologies. There are multiple technologies that can be used to track pipes, but this article focuses on Bluetooth 5, which is a relatively new technology that represents a cost-effective solution to cope with harsh environments, since it has been significantly enhanced in terms of low power consumption, range, speed and broadcasting capacity. Thus, it is proposed a Bluetooth 5 fog computing based ICPS architecture that is designed to support physically-distributed and low-latency Industry 4.0 applications that off-load network traffic and computational resources from the cloud. In order to validate the proposed ICPS design, one of the Navantia's pipe workshops was modeled through an in-house developed 3D-ray launching radio planning simulator that allows for estimating the coverage provided by the deployed Bluetooth 5 fog computing nodes and Bluetooth 5 tags. The experiments described in this article show that the radio propagation results obtained by the simulation tool are really close to the ones obtained through empirical measurements. As a consequence, the simulation tool is able to reduce ICPS design and deployment time and provide guidelines to future developers when deploying Bluetooth 5 fog computing nodes and tags in complex industrial scenarios.