López Iturri, Peio
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
López Iturri
First Name
Peio
person.page.departamento
Ciencias
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access A radio channel model for D2D communications blocked by single trees in forest environments(MDPI, 2019) Picallo Guembe, Imanol; Klaina, Hicham; López Iturri, Peio; Aguirre Gallego, Erik; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Eguizábal Garrido, Alejandro; Falcone Lanas, Francisco; Alejos, Ana V.; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónIn this paper we consider the D2D (Device-to-Device) communication taking place between Wireless Sensor Networks (WSN) elements operating in vegetation environments in order to achieve the radio channel characterization at 2.4 GHz, focusing on the radio links blocked by oak and pine trees modelled from specimens found in a real recreation area located within forest environments. In order to fit and validate a radio channel model for this type of scenarios, both measurements and simulations by means of an in-house developed 3D Ray Launching algorithm have been performed, offering as outcomes the path loss and multipath information of the scenarios under study for forest immersed isolated trees and non-isolated trees. The specific forests, composed of thick in-leaf trees, are called Orgi Forest and Chandebrito, located respectively in Navarre and Galicia, Spain. A geometrical and dielectric model of the trees were created and introduced in the simulation software. We concluded that the scattering produced by the tree can be divided into two zones with different dominant propagation mechanisms: an obstructed line of sight (OLoS) zone far from the tree fitting a log-distance model, and a diffraction zone around the edge of the tree. 2D planes of delay spread value are also presented which similarly reflects the proposed two-zone model.Publication Open Access Implementation of an interactive environment with multilevel wireless links for distributed botanical garden in university campus(IEEE, 2020) Klaina, Hicham; Picallo Guembe, Imanol; López Iturri, Peio; Astrain Escola, José Javier; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Estadística, Informática y MatemáticasIn this contribution, an end to end system to enable user interaction with a distributed botanical university campus garden is designed, implemented and tested. The proposed system employs different wireless links to collect data related to different bio physiological parameters of both the vegetation mass and the surrounding environment. Detailed analysis of these multilevel communication links is performed by using deterministic volumetric wireless channel estimation and considering underground, near ground and over ground radio propagation conditions. An in-house developed technique enables accurate wireless channel characterization for complete campus scenario considering the multiple link types and all its composing elements. Node definition and network topology is thus obtained by wireless channel analysis of over ground, near ground and underground communication for both 868 MHz and 2.4 GHz Wireless Sensor Networks in an inhomogeneous vegetation environment. Connectivity to enable user interaction as well as for telemetry and tele-control purposes within the campus is achieved by combining ZigBee and LoRaWAN transceivers with the corresponding sensor/actuator platforms. Coverage studies have been performed in order to assess communication capabilities in the set of multiple underground/near ground/over ground links, by means of deterministic channel analysis for the complete university campus location. Measurement results in lab environment as well as full system deployment are presented, showing good agreement with deterministic simulations. Moreover, system level tests have been performed over a physical campus cloud, providing adequate quality of experience metrics. The proposed solution is a scalable system that provides real time trees status monitoring by a cloud-based platform, enabling user interaction within a distributed botanical garden environment in the university campus.