López Iturri, Peio
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
López Iturri
First Name
Peio
person.page.departamento
Ciencias
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Towards environmental RF-EMF assessment of mmwave high-node density complex heterogeneous environments(MDPI, 2021) Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Rodríguez Corbo, Fidel Alejandro; López Iturri, Peio; Ramos González, Victoria; Alibakhshikenari, Mohammad; Shubair, Raed M.; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónThe densification of multiple wireless communication systems that coexist nowadays, as well as the 5G new generation cellular systems advent towards the millimeter wave (mmWave) frequency range, give rise to complex context-aware scenarios with high-node density heterogeneous networks. In this work, a radiofrequency electromagnetic field (RF-EMF) exposure assessment from an empirical and modeling approach for a large, complex indoor setting with high node density and traffic is presented. For that purpose, an intensive and comprehensive in-depth RF-EMF E-field characterization study is provided in a public library study case, considering dense personal mobile communications (5G FR2 @28 GHz) and wireless 802.11ay (@60 GHz) data access services on the mmWave frequency range. By means of an enhanced in-house deterministic 3D ray launching (3D-RL) simulation tool for RF-EMF exposure assessment, different complex heterogenous scenarios of high complexity are assessed in realistic operation conditions, considering different user distributions and densities. The use of directive antennas and MIMO beamforming techniques, as well as all the corresponding features in terms of radio wave propagation, such as the body shielding effect, dispersive material properties of obstacles, the impact of the distribution of scatterers and the associated electromagnetic propagation phenomena, are considered for simulation. Discussion regarding the contribution and impact of the coexistence of multiple heterogeneous networks and services is presented, verifying compliance with the current established international regulation limits with exposure levels far below the aforementioned limits. Finally, the proposed simulation technique is validated with a complete empirical campaign of measurements, showing good agreement. In consequence, the obtained datasets and simulation estimations, along with the proposed RF-EMF simulation tool, could be a reference approach for the design, deployment and exposure assessment of the current and future wireless communication technologies on the mmWave spectrum, where massive high-node density heterogeneous networks are expected.Publication Open Access 5G spatial modeling of personal RF-EMF assessment within aircrafts cabin environments(IEEE, 2022) Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Rodríguez Corbo, Fidel Alejandro; López Iturri, Peio; Shubair, Raed M.; Ramos González, Victoria; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónRecently, new wireless communication systems within aircrafts cabins have drawn higher attention due to the growing demand of passenger services and applications and their corresponding requirements and constraints. In this regard, the fifth generation (5G) of wireless communication becomes an attractive and promising alternative to enable aircraft passengers' comfort and entertainment along the flight, considering its potential benefits in term of high data transfers and low latencies. Nevertheless, general population concern about radio frequency electromagnetic fields (RF-EMF) safety in general and, in particular to the environmental exposure at which we are all exposed in these flights, increases at the same time. Thus, in this work, we present an experimental campaign of measurements for current passengers' environmental exposure assessment, performed in different real generalizable type of flights and aircrafts' cabins, in order to provide current RF-EMF exposure insight within these complex heterogeneous environments. In addition, worst-case uplink 5G scenarios, where all 5G cellular handsets of the passengers operate at the same time, have been simulated by means of an in-house developed 3D Ray Launching (3D-RL) deterministic technique. Before takeoff and after landing, critical scenarios with the aircrafts' doors closed have been selected and assessed considering different types of modeled aircrafts full of passengers, considering 5G frequency range 2 (5G-FR2) operating links. The obtained results show that the operation frequency and the morphology and topology of the aircraft cabin have a great influence in the environmental RF-EMF passengers' spatial distribution and overall exposure, but not exceeding, even in worst case conditions, the international established regulatory limits. © 2022 IEEE.