López Iturri, Peio

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

López Iturri

First Name

Peio

person.page.departamento

Ciencias

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    Aggregator to electric vehicle LoRaWAN based communication analysis in vehicle-to-grid systems in smart cities
    (IEEE, 2020) Klaina, Hicham; Picallo Guembe, Imanol; López Iturri, Peio; Astrain Escola, José Javier; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Estadística, Informática y Matemáticas
    Recently, there has been growing attention to the power grid management due to the increasing concerns on global warming. With the advancement in electric vehicles (EV) industry and the evolution in batteries, EVs become an important contributor to the grid with capability of bidirectional power exchange with the grid. In this context, Vehicle-to-Grid (V2G) systems enable multiple functionalities between EVs and the corresponding aggregator. Thus, reliable, long-range communication capabilities between aggregator and EVs is compulsory. In this paper, wireless channel analysis for aggregator and electrical vehicle communication using Long-Range Wide Area Network (LoRaWAN) technology in V2G is presented, in order to test a low-cost solution with large coverage and reduced power consumption profile. Wireless channel and system-level measurements have been performed in a real urban scenario between EV's charging station in Pamplona (Spain) and a vehicle in motion using LoRaWAN 868 MHz devices. Wireless channel characterization is performed by implementing a full 3D urban scenario model, including elements such as buildings, vehicles, users and urban infrastructure such as lamp posts and benches. By means of in-house developed 3D Ray Launching algorithm with hybrid simulation capabilities, estimations of received power levels, signal to noise ratio and time domain parameters have been obtained, for the complete volume of the scenario under test in dense urban conditions. V2G end to end communication has been validated by implementing an intra-vehicle Controller Area Network-BUS (CAN BUS) data gathering system connected to the vehicle LoRaWAN transceiver and subsequently, to a cloud-based web service. The results show that the accurate deterministic based radio channel analysis enables to optimize the network design of LoRaWAN networks in a vehicular environment, considering inter-vehicular and infrastructure links, enabling scalable, low cost end to end data exchange for the deployment of ancillary V2G services.
  • PublicationOpen Access
    From 2G to 5G spatial modeling of personal RF-EMF exposure within urban public trams
    (IEEE, 2020) Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Karpowicz, Jolanta; López Iturri, Peio; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    The upcoming design and implementation of the new generation of 5G cellular systems, jointly with the multiple wireless communication systems that nowadays coexist within vehicular environments, leads to Heterogeneous Network challenging urban scenarios. In this framework, user's Radiofrequency Electromagnetic Fields (RF-EMF) radiation exposure assessment is pivotal, to verify compliance with current legislation thresholds. In this work, an in-depth study of the E-field characterization of the personal mobile communications within urban public trams is presented, considering different cellular technologies (from 2G to 5G). Specifically, frequency bands in the range of 5G NR frequency range 1 (FR1) and millimeter wave (mm-wave) bands within frequency range 2 (FR2) have been analyzed for 5G scenarios, considering their dispersive material properties. A simulation approach is presented to assess user mobile phone base station up-link radiation exposure, considering all the significant features of urban transportation trams in terms of structure morphology and topology or the materials employed. In addition, different user densities have been considered at different frequency bands, from 2G to 5G (FR1 and FR2), by means of an in-house developed deterministic 3D Ray-Launching (3D-RL) technique in order to provide clear insight spatial E-field distribution, including the impact in the use of directive antennas and beamforming techniques, within realistic operation conditions. Discussion in relation with current exposure limits have been presented, showing that for all cases, E-Field results are far below the maximum reference levels established by the ICNIRP guidelines. By means of a complete E-field campaign of measurements, performed with both, a personal exposimeter (PEM) and a spectrum analyzer within a real tram wagon car, the proposed methodology has been validated showing good agreement with the experimental measurements. In consequence, a simulation-based analysis methodology for dosimetry estimation is provided, aiding in the assessment of current and future cellular deployments in complex heterogeneous vehicular environments.
  • PublicationOpen Access
    Spatial characterization of personal RF-EMF exposure in public transportation buses
    (IEEE, 2019) Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Aguirre Gallego, Erik; Miguel Bilbao, Silvia de; Ramos, Victoria; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    New services and applications within vehicular environments employ multiple wireless communication systems, within a Heterogeneous Network framework. In this context, evaluation of electromagnetic field impact is compulsory, in order to warrant compliance with current exposure limits. In this work, E-field strength distribution within urban transportation buses is studied, in which different types of buses as well as network configurations are considered. E-field estimations are obtained within the complete interior volume of the urban buses, considering all of the characteristics in terms of bus structure and materials employed, by means of an in-house developed deterministic 3D Ray-Launching (3D-RL) code. In this way, relevant phenomena in terms of electromagnetic propagation and interaction are considered, such as multipath propagation and shadowing, which determine exposure levels as a function of transceiver location within the bus scenarios. The behavior in terms of E-field distribution of wireless Public Land Mobile communication systems within transportation buses have been analyzed by means of measurement campaigns employing personal exposimeter devices. In addition, E-field volumetric distributions by means of 3D-RL simulations have been obtained as a function of user distribution within the buses, with the aim of analyzing the impact of user presence within complex intra-vehicular indoor scenarios such as urban transportation buses. A comparison with current exposure limits given by currently adopted standards is obtained, showing that E-field levels were below the aforementioned limits. The use of deterministic simulation techniques based on 3D-RL enables E-field exposure analysis in complex indoor scenarios, offering an optimized balance between accuracy and computational cost. These results and the proposed simulation methodology, can aid in an adequate assessment of human exposure to non-ionizing radiofrequency fields in public transportation buses, considering the impact of the morphology and the topology of vehicles, for current as well as for future wireless technologies and exposure limits.
  • PublicationOpen Access
    Validation of 3D simulation tool for radio channel modeling at 60 GHz: a meeting point for empirical and simulation-based models
    (Elsevier, 2020) Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Falcone Lanas, Francisco; García Sánchez, Manuel; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    The radio channel modelling of the millimeter wave bands for the fifth generation of wireless mobile communications, appears as a challenge for both empirical and simulation approaches. In this paper we discuss the use of experimental datasets for validation of a simulation tool based on deterministic 3D ray-launching technique. The goal it twofold: validating the simulation tool and achieving more consistent results considering the restrictions and performance limits of hardware elements. A microcell canyon street scenario has been chosen for interleaving ray launching prediction and empirical analysis. Simulation results such as received power or angular distribution of path loss, as well as channel dispersion parameters such as root-mean-square delay spread have been presented. In addition, the line-of-sight to non-line-of-sight transition has been modeled as a result of the empirical-simulation interaction. Comparison of simulation and measurement results for the proposed microcellular urban scenario exhibit good agreement, validating the proposed methodology. (C) 2020 Elsevier Ltd. All rights reserved.