López Iturri, Peio

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

López Iturri

First Name

Peio

person.page.departamento

Ciencias

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 19
  • PublicationOpen Access
    Implementation of radiating elements for radiofrequency front-ends by screen-printing techniques for Internet of Things applications
    (MDPI, 2019) Picallo Guembe, Imanol; Klaina, Hicham; López Iturri, Peio; Sánchez, Aitor; Méndez Giménez, Leire; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2017-000103
    The advent of the Internet of Things (IoT) has led to embedding wireless transceivers into a wide range of devices, in order to implement context-aware scenarios, in which a massive amount of transceivers is foreseen. In this framework, cost-effective electronic and Radio Frequency (RF) front-end integration is desirable, in order to enable straightforward inclusion of communication capabilities within objects and devices in general. In this work, flexible antenna prototypes, based on screen-printing techniques, with conductive inks on flexible low-cost plastic substrates is proposed. Different parameters such as substrate/ink characteristics are considered, as well as variations in fabrication process or substrate angular deflection in device performance. Simulation and measurement results are presented, as well as system validation results in a real test environment in wireless sensor network communications. The results show the feasibility of using screen-printing antenna elements on flexible low-cost substrates, which can be embedded in a wide array of IoT scenarios.
  • PublicationOpen Access
    Performance evaluation and interference characterization of wireless sensor networks for complex high-node density scenarios
    (MDPI, 2019) Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Aguirre Gallego, Erik; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    The uncontainable future development of smart regions, as a set of smart cities’ networks assembled, is directly associated with a growing demand of full interactive and connected ubiquitous smart environments. To achieve this global connection goal, large numbers of transceivers and multiple wireless systems will be involved to provide user services and applications anytime and anyplace, regardless the devices, networks, or systems they use. Adequate, efficient and effective radio wave propagation tools, methodologies, and analyses in complex indoor and outdoor environments are crucially required to prevent communication limitations such as coverage, capacity, speed, or channel interferences due to high-node density or channel restrictions. In this work, radio wave propagation characterization in an urban indoor and outdoor wireless sensor network environment has been assessed, at ISM 2.4 GHz and 5 GHz frequency bands. The selected scenario is an auditorium placed in an open free city area surrounded by inhomogeneous vegetation. User density within the scenario, in terms of inherent transceivers density, poses challenges in overall system operation, given by multiple node operation which increases overall interference levels. By means of an in-house developed 3D ray launching (3D-RL) algorithm with hybrid code operation, the impact of variable density wireless sensor network operation is presented, providing coverage/capacity estimations, interference estimation, device level performance and precise characterization of multipath propagation components in terms of received power levels and time domain characteristics. This analysis and the proposed simulation methodology, can lead in an adequate interference characterization extensible to a wide range of scenarios, considering conventional transceivers as well as wearables, which provide suitable information for the overall network performance in crowded indoor and outdoor complex heterogeneous environments.
  • PublicationOpen Access
    Wireless characterization and assessment of an UWB-Based system in industrial environments
    (IEEE, 2021) Picallo Guembe, Imanol; López Iturri, Peio; Klaina, Hicham; Glaría Ezker, Guillermo; Sáez de Jaúregui Urdanoz, Félix; Zabalza Cestau, José Luis; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua
    The advent of Indsutrial Internet of Things is one of the main drivers for the implementation of Industry 4.0 scenarios and applications, in which wireless communication systems play a key role in terms of flexibility, mobility and deployment capabilities. However, the integration of wireless communication systems poses challenges, owing to variable path loss conditions and interference impact. In this work, an Ultra-Wideband (UWB) system for indoor location in very large, complex industrial scenarios is presented. Precise wireless channel characterization for the complete volume of a logistical plant is performed, based on 3D hybrid ray launching approximation, in order to aid network node design process. Wireless characterization, implementation and measurement results are obtained for both 4 GHz and 6 GHz frequency bands, considering different densities of scatterers within the scenario under test. Time domain estimation results have been obtained and compared with time of flight measurement results, showing good agreement. The proposed methodology enables to perform system design and performance tasks, analyzing the impact of variable object density conditions in wireless channel response, providing accurate time of flight estimations without the need of complex channel sounder systems, aiding in optimal system planning and implementation.
  • PublicationOpen Access
    Implementation and analysis of ISM 2.4 GHz wireless sensor network systems in judo training venues
    (MDPI, 2016) López Iturri, Peio; Aguirre Gallego, Erik; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    In this work, the performance of ISM 2.4 GHz Wireless Sensor Networks (WSNs) deployed in judo training venues is analyzed. Judo is a very popular martial art, which is practiced by thousands of people not only at the competition level, but also as part of physical education programs at different school levels. There is a great variety of judo training venues, and each one has specific morphological aspects, making them unique scenarios in terms of radio propagation due to the presence of furniture, columns, equipment and the presence of human beings, which is a major issue as the person density within this kind of scenarios could be high. Another key aspect is the electromagnetic interference created by other wireless systems, such as WiFi or other WSNs, which make the radio planning a complex task in terms of coexistence. In order to analyze the impact of these features on the radio propagation and the performance of WSNs, an in-house developed 3D ray launching algorithm has been used. The obtained simulation results have been validated with a measurement campaign carried out in the sport facilities of the Public University of Navarre. The analysis is completed with the inclusion of an application designed to monitor biological constants of judokas, aimed to improve their training procedures. The application, that allows the simultaneous monitoring of multiple judokas (collective workouts) minimizing the efforts of the coach and medical supervisor, is based on commercial off-the-shelf products. The presented assessment of the presence of interfering wireless systems and the presence of human beings within judo training venues shows that an in-depth radio planning is required as these issues can have a great impact in the overall performance of a ISM 2.4 GHz WSN, affecting negatively the potential applications supported by wireless channel.
  • PublicationOpen Access
    Zigbee radio channel analysis in a complex vehicular environment [wireless corner]
    (IEEE, 2014) Rajo-Iglesias, Eva; López Iturri, Peio; Aguirre Gallego, Erik; Azpilicueta Fernández de las Heras, Leyre; Garate Fernández, Uxue; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this paper, the influence of topology and morphology of a particularly complex scenario for the deployment of ZigBee wireless sensor networks is analyzed. This complex scenario is a car. The existence of loss mechanisms such as material absorption (seats, dashboard, etc.) and strong multipath components due to the great number of obstacles and the metallic environment (bodywork), as well as the growing demand for wireless systems within a vehicle emphasizes the importance of the configuration of the heterogeneous intra-car wireless systems. Measurement results as well as simulation results by means of an in-house 3D ray launching algorithm illustrate the strong influence of this complex scenario in the overall performance of the intra-car wireless sensor network. Results also show that ZigBee is a viable technology for successfully deploying intra-car wireless sensor networks.
  • PublicationOpen Access
    Analysis of wireless sensor network topology and estimation of optimal network deployment by deterministic radio channel characterization
    (MDPI, 2015) Aguirre Gallego, Erik; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniería Matemática e Informática; Ingeniaritza Elektrikoa eta Elektronikoa; Matematika eta Informatika Ingeniaritza
    One of the main challenges in the implementation and design of context-aware scenarios is the adequate deployment strategy for Wireless Sensor Networks (WSNs), mainly due to the strong dependence of the radiofrequency physical layer with the surrounding media, which can lead to non-optimal network designs. In this work, radioplanning analysis for WSN deployment is proposed by employing a deterministic 3D ray launching technique in order to provide insight into complex wireless channel behavior in context-aware indoor scenarios. The proposed radioplanning procedure is validated with a testbed implemented with a Mobile Ad Hoc Network WSN following a chain configuration, enabling the analysis and assessment of a rich variety of parameters, such as received signal level, signal quality and estimation of power consumption. The adoption of deterministic radio channel techniques allows the design and further deployment of WSNs in heterogeneous wireless scenarios with optimized behavior in terms of coverage, capacity, quality of service and energy consumption.
  • PublicationOpen Access
    A radio channel model for D2D communications blocked by single trees in forest environments
    (MDPI, 2019) Picallo Guembe, Imanol; Klaina, Hicham; López Iturri, Peio; Aguirre Gallego, Erik; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Eguizábal Garrido, Alejandro; Falcone Lanas, Francisco; Alejos, Ana V.; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In this paper we consider the D2D (Device-to-Device) communication taking place between Wireless Sensor Networks (WSN) elements operating in vegetation environments in order to achieve the radio channel characterization at 2.4 GHz, focusing on the radio links blocked by oak and pine trees modelled from specimens found in a real recreation area located within forest environments. In order to fit and validate a radio channel model for this type of scenarios, both measurements and simulations by means of an in-house developed 3D Ray Launching algorithm have been performed, offering as outcomes the path loss and multipath information of the scenarios under study for forest immersed isolated trees and non-isolated trees. The specific forests, composed of thick in-leaf trees, are called Orgi Forest and Chandebrito, located respectively in Navarre and Galicia, Spain. A geometrical and dielectric model of the trees were created and introduced in the simulation software. We concluded that the scattering produced by the tree can be divided into two zones with different dominant propagation mechanisms: an obstructed line of sight (OLoS) zone far from the tree fitting a log-distance model, and a diffraction zone around the edge of the tree. 2D planes of delay spread value are also presented which similarly reflects the proposed two-zone model.
  • PublicationOpen Access
    Integration of autonomous wireless sensor networks in academic school gardens
    (MDPI, 2018) López Iturri, Peio; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Aguirre Gallego, Erik; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work, the combination of capabilities provided by Wireless Sensor Networks (WSN) with parameter observation in a school garden is employed in order to provide an environment for school garden integration as a complementary educational activity in primary schools. Wireless transceivers with energy harvesting capabilities are employed in order to provide autonomous system operation, combined with an ad-hoc implemented application called MySchoolGardenApp, based on a modular software architecture. The system enables direct parameter observation, data analysis and processing capabilities, which can be employed by students in a cloud based platform. Providing remote data access allows the adaptation of content to specific classroom/homework needs. The proposed monitoring WSN has been deployed in an orchard located in the schoolyard of a primary school, which has been built with EnOcean's energy harvesting modules, providing an optimized node device as well network layout. For the assessment of the wireless link quality and the deployment of the modules, especially the central module which needs to receive directly the signals of all the sensor modules, simulation results obtained by an in-house developed 3D Ray Launching deterministic method have been used, providing coverage/capacity estimations applicable to the specific school environment case. Preliminary trials with MySchoolGardenApp have been performed, showing the feasibility of the proposed platform as an educational resource in schools, with application in specific natural science course content, development of technological skills and the extension of monitoring capabilities to new context-aware applications.
  • PublicationOpen Access
    IIoT low-cost Zigbee-based WSN implementation for enhanced production efficiency in a solar protection curtains manufacturing workshop
    (MDPI, 2024) Klaina, Hicham; Picallo Guembe, Imanol; López Iturri, Peio; Biurrun, Aitor; Alejos, Ana V.; Azpilicueta Fernández de las Heras, Leyre; Socorro Leránoz, Abián Bentor; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Nowadays, the Industry 4.0 concept and the Industrial Internet of Things (IIoT) are considered essential for the implementation of automated manufacturing processes across various industrial settings. In this regard, wireless sensor networks (WSN) are crucial due to their inherent mobility, easy deployment and maintenance, scalability, and low power consumption, among other benefits. In this context, the presented paper proposes an optimized and low-cost WSN based on ZigBee communication technology for the monitoring of a real manufacturing facility. The company designs and manufactures solar protection curtains and aims to integrate the deployed WSN into the Enterprise Resource Planning (ERP) system in order to optimize their production processes and enhance production efficiency and cost estimation capabilities. To achieve this, radio propagation measurements and 3D ray launching simulations were conducted to characterize the wireless channel behavior and facilitate the development of an optimized WSN system that can operate in the complex industrial environment presented and validated through on-site wireless channel measurements, as well as interference analysis. Then, a low-cost WSN was implemented and deployed to acquire real-time data from different machinery and workstations, which will be integrated into the ERP system. Multiple data streams have been collected and processed from the shop floor of the factory by means of the prototype wireless nodes implemented. This integration will enable the company to optimize its production processes, fabricate products more efficiently, and enhance its cost estimation capabilities. Moreover, the proposed system provides a scalable platform, enabling the integration of new sensors as well as information processing capabilities.
  • PublicationOpen Access
    Design, assessment and deployment of an efficient golf game dynamics management system based on flexible wireless technologies
    (MDPI, 2023) Picallo Guembe, Imanol; Aguirre Gallego, Erik; López Iturri, Peio; Guembe Zabaleta, Javier; Olariaga Jauregui, Eduardo; Klaina, Hicham; Marcotegui Iturmendi, José Antonio; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    The practice of sports has been steadily evolving, taking advantage of different technological tools to improve different aspects such as individual/collective training, support in match development or enhancement of audience experience. In this work, an in-house implemented monitoring system for golf training and competition is developed, composed of a set of distributed end devices, gateways and routers, connected to a web-based platform for data analysis, extraction and visualization. Extensive wireless channel analysis has been performed, by means of deterministic 3D radio channel estimations and radio frequency measurements, to provide coverage/capacity estimations for the specific use case of golf courses. The monitoring system has been fully designed considering communication as well as energy constraints, including wireless power transfer (WPT) capabilities in order to provide flexible node deployment. System validation has been performed in a real golf course, validating end-to-end connectivity and information handling to improve overall user experience.