López Iturri, Peio
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
López Iturri
First Name
Peio
person.page.departamento
Ciencias
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
55 results
Search Results
Now showing 1 - 10 of 55
Publication Open Access Impact of body wearable sensor positions on UWB ranging(IEEE, 2019) Otim, Timothy; Bahillo, Alfonso; Díez, Luis E.; López Iturri, Peio; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónIn recent years, Ultrawideband (UWB) has become a very popular technology for time of flight (TOF) based localization and tracking applications but its human body interactions have not been studied yet extensively. Most UWB systems already proposed for pedestrian ranging have only been individually evaluated for a particular wearable sensor position. It is observed that wearable sensors mounted on or close to the human body can raise line-of-sight (LOS), quasi-line-of-sight (QLOS), and non-line-of-sight (NLOS) scenarios leading to significant ranging errors depending on the relative heading angle (RHA) between the pedestrian, wearable sensor, and anchors. In this paper, it is presented that not only does the ranging error depend on the RHA, but on the position of the wearable sensors on the pedestrian. Seven wearable sensor locations namely, fore-head, hand, chest, wrist, arm, thigh and ankle are evaluated and a fair comparison is made through extensive measurements and experiments in a multipath environment. Using the direction in which the pedestrian is facing, the RHA between the pedestrian, wearable sensor, and anchors is computed. For each wearable sensor location, an UWB ranging error model with respect to the human body shadowing effect is proposed. A final conclusion is drawn that among the aforementioned wearable locations, the fore-head provides the best range estimate because it is able to set low mean range errors of about 20 cm in multipath conditions. The fore-head's performance is followed by the hand, wrist, ankle, arm, thigh, and chest in that order.Publication Open Access Optimization and design of wireless systems for the implementation of context aware scenarios in railway passenger vehicles(IEEE, 2017) Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; López Iturri, Peio; Granda, Fausto; Vargas Rosales, César; Villadangos Alonso, Jesús; Perallos Ruiz, Asier; Bahillo, Alfonso; Falcone Lanas, Francisco; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIn this paper, intra-wagon wireless communication performance is analyzed, in order to account for inherent scenario complexity in the deployment phase of wireless systems toward the implementation of a context-aware environment. A real commercial passenger wagon has been simulated by means of an in-house-developed 3-D ray launching code, accounting for embedded wagon elements as well as variable user densities within the passenger wagon. Onboard measurements of a designed and deployed wireless sensor network are obtained, showing good agreement with wireless channel estimations for two different frequencies of operation. Energy consumption behavior and user density impact have also been analyzed and estimated as a function of network topology and the operational mode. These results can aid in wireless transceivers deployment configurations, in order to minimize power consumption, optimize interference levels, and increase overall service performance.Publication Open Access Aggregator to electric vehicle LoRaWAN based communication analysis in vehicle-to-grid systems in smart cities(IEEE, 2020) Klaina, Hicham; Picallo Guembe, Imanol; López Iturri, Peio; Astrain Escola, José Javier; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Estadística, Informática y MatemáticasRecently, there has been growing attention to the power grid management due to the increasing concerns on global warming. With the advancement in electric vehicles (EV) industry and the evolution in batteries, EVs become an important contributor to the grid with capability of bidirectional power exchange with the grid. In this context, Vehicle-to-Grid (V2G) systems enable multiple functionalities between EVs and the corresponding aggregator. Thus, reliable, long-range communication capabilities between aggregator and EVs is compulsory. In this paper, wireless channel analysis for aggregator and electrical vehicle communication using Long-Range Wide Area Network (LoRaWAN) technology in V2G is presented, in order to test a low-cost solution with large coverage and reduced power consumption profile. Wireless channel and system-level measurements have been performed in a real urban scenario between EV's charging station in Pamplona (Spain) and a vehicle in motion using LoRaWAN 868 MHz devices. Wireless channel characterization is performed by implementing a full 3D urban scenario model, including elements such as buildings, vehicles, users and urban infrastructure such as lamp posts and benches. By means of in-house developed 3D Ray Launching algorithm with hybrid simulation capabilities, estimations of received power levels, signal to noise ratio and time domain parameters have been obtained, for the complete volume of the scenario under test in dense urban conditions. V2G end to end communication has been validated by implementing an intra-vehicle Controller Area Network-BUS (CAN BUS) data gathering system connected to the vehicle LoRaWAN transceiver and subsequently, to a cloud-based web service. The results show that the accurate deterministic based radio channel analysis enables to optimize the network design of LoRaWAN networks in a vehicular environment, considering inter-vehicular and infrastructure links, enabling scalable, low cost end to end data exchange for the deployment of ancillary V2G services.Publication Open Access Analysis and implementation of wireless communications systems and IoT with human body interference in inhomogeneous environments(2021) Picallo Guembe, Imanol; Klaina, Hicham; Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThe Integration of wireless communication systems is one of the main drivers of the development of the future connected society. However, this will cause challenges due to the non-static channel effect and interference impact. For this reason, a research work is proposed that enables to obtain optimal node location in relation to radio planning tasks (coverage/capacity analysis, number of lost packets, devices’ consumption...), as well as to characterize the environments considering obstacles and human body being, in terms of the received power level in the complete simulation volume and at the time domain level. This will help derive wireless channel models taking into account real channel variations to deploy a Wireless Sensor Network (WSN) and reduce the impact on wireless systems performance.Publication Open Access Analysis of low power wide area network wireless technologies in smart agriculture for large-scale farm monitoring and tractor communications(Elsevier, 2022) Klaina, Hicham; Picallo Guembe, Imanol; López Iturri, Peio; Campo-Bescós, Miguel; Azpilicueta Fernández de las Heras, Leyre; Aghzout, Otman; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónIn this paper, the assessment of multiple scenario cases for large-scale farm monitoring using Low-Power Wide-Area Network (LPWAN) based near-ground sensor nodes with the interaction of both tractors and farmers are presented. The proposed scenario under analysis considers multiple communication links, namely nodes to infrastructure, nodes to tractor, nodes to farmer, tractor to infrastructure and farmer to infrastructure communications. Moreover, these scenarios are proposed for tractors and agricultural equipment performance improvement and tracking, as well as resources management within the farm field. Different link type configurations are tested in order to consider the impact of ground, spatial distribution as well as infrastructure elements. The results show that LPWAN-based WSNs can provide better performance in terms of coverage and radio link quality results than ZigBee for a non-flat large-scale farm field in both cases of near-ground fixed nodes and moving tractor and farmer. The proposed systems are validated by cloud-based platforms for LoRaWAN, Sigfox and NB-IoT communications, providing flexible and scalable solutions to enable interactive farming applications.Publication Open Access A radio channel model for D2D communications blocked by single trees in forest environments(MDPI, 2019) Picallo Guembe, Imanol; Klaina, Hicham; López Iturri, Peio; Aguirre Gallego, Erik; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Eguizábal Garrido, Alejandro; Falcone Lanas, Francisco; Alejos, Ana V.; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónIn this paper we consider the D2D (Device-to-Device) communication taking place between Wireless Sensor Networks (WSN) elements operating in vegetation environments in order to achieve the radio channel characterization at 2.4 GHz, focusing on the radio links blocked by oak and pine trees modelled from specimens found in a real recreation area located within forest environments. In order to fit and validate a radio channel model for this type of scenarios, both measurements and simulations by means of an in-house developed 3D Ray Launching algorithm have been performed, offering as outcomes the path loss and multipath information of the scenarios under study for forest immersed isolated trees and non-isolated trees. The specific forests, composed of thick in-leaf trees, are called Orgi Forest and Chandebrito, located respectively in Navarre and Galicia, Spain. A geometrical and dielectric model of the trees were created and introduced in the simulation software. We concluded that the scattering produced by the tree can be divided into two zones with different dominant propagation mechanisms: an obstructed line of sight (OLoS) zone far from the tree fitting a log-distance model, and a diffraction zone around the edge of the tree. 2D planes of delay spread value are also presented which similarly reflects the proposed two-zone model.Publication Open Access Integration of autonomous wireless sensor networks in academic school gardens(MDPI, 2018) López Iturri, Peio; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Aguirre Gallego, Erik; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this work, the combination of capabilities provided by Wireless Sensor Networks (WSN) with parameter observation in a school garden is employed in order to provide an environment for school garden integration as a complementary educational activity in primary schools. Wireless transceivers with energy harvesting capabilities are employed in order to provide autonomous system operation, combined with an ad-hoc implemented application called MySchoolGardenApp, based on a modular software architecture. The system enables direct parameter observation, data analysis and processing capabilities, which can be employed by students in a cloud based platform. Providing remote data access allows the adaptation of content to specific classroom/homework needs. The proposed monitoring WSN has been deployed in an orchard located in the schoolyard of a primary school, which has been built with EnOcean's energy harvesting modules, providing an optimized node device as well network layout. For the assessment of the wireless link quality and the deployment of the modules, especially the central module which needs to receive directly the signals of all the sensor modules, simulation results obtained by an in-house developed 3D Ray Launching deterministic method have been used, providing coverage/capacity estimations applicable to the specific school environment case. Preliminary trials with MySchoolGardenApp have been performed, showing the feasibility of the proposed platform as an educational resource in schools, with application in specific natural science course content, development of technological skills and the extension of monitoring capabilities to new context-aware applications.Publication Open Access Optimized wireless channel characterization in large complex environments by hybrid ray launching-collaborative filtering approach(IEEE, 2017) Casino, Fran; Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Aguirre Gallego, Erik; Falcone Lanas, Francisco; Solanas, Agustí; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaSimulation techniques based on deterministic methods such as Ray Tracing and Ray Launching, are widely used to perform radioplanning tasks. However, the quality of the simulations depends on the number of rays and the angular resolution. The computational cost of these simulations in High Definition prevents their use in complex environments and their Low Definition counterparts are used instead. In this article we propose a technique based on collaborative filtering to lessen the poor quality problems of Low Definition simulations. We show that our approach obtains results very similar to those of High Definition in much less time. Also, we compare our approach with other well-known techniques and we show that it performs better in terms of accuracy and precision. The use of combined deterministic/collaborative filtering techniques allows the estimation of radioplanning tasks in large, complex scenarios with a potentially large amount of transceivers.Publication Open Access Multimodal minimally invasive wearable technology for epilepsy monitoring: a feasibility study of the periauricular area(IEEE, 2023) Besné, Guillermo M.; López Iturri, Peio; Alegre, Manuel; Artieda, Julio; Trigo Vilaseca, Jesús Daniel; Serrano Arriezu, Luis Javier; Falcone Lanas, Francisco; Valencia Ustárroz, Miguel; Institute of Smart Cities - ISCAmbulatory monitoring is of great interest in both clinical and domestic environments. Despite the technological advances, few monitoring solutions are suitable for medical application and diagnosis. Here, we investigate the feasibility of targeting the periauricular area (ear pavilion, ear canal, and the surrounding skin areas) to implement a multimodal system that fulfills the requirements of ergonomics and minimal obstructiveness in the context of epilepsy monitoring. Six physiological signals are selected and explored for their integration in the area of interest and a ¿proof-of-concept¿ prototype integrating the components in a single portable device targeting the selected location is implemented. Results show mixed results where some parameters are highly reliable, and others are impractical or require customized technology to provide clinically relevant information. To enable data acquisition, storage, and processing within the Internet of Medical Things paradigms, wireless body area transceiver integration is also analyzed in terms of coverage/capacity relations, showing feasibility for such device configuration.Publication Open Access Building decentralized fog computing-based smart parking systems: from deterministic propagation modeling to practical deployment(IEEE, 2020) Celaya Echarri, Mikel; Froiz Míguez, Iván; Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónThe traditional process of finding a vacant parking slot is often inefficient: it increases driving time, traffic congestion, fuel consumption and exhaust emissions. To address such problems, smart parking systems have been proposed to help drivers to find available parking slots faster using latest sensing and communications technologies. However, the deployment of the communications infrastructure of a smart parking is not straightforward due to multiple factors that may affect wireless propagation. Moreover, a smart parking system needs to provide not only accurate information on available spots, but also fast responses while guaranteeing the system availability even in the case of lacking connectivity. This article describes the development of a decentralized low-latency smart parking system: from its conception, design and theoretical simulation, to its empirical validation. Thus, this work first characterizes a real-world scenario and proposes a fog computing and Internet of Things (IoT) based communications architecture to provide smart parking services. Next, a thorough analysis on the wireless channel properties is carried out by means of an in-house developed deterministic 3D-Ray Launching (3D-RL) tool. The obtained results are validated through a real-world measurement campaign and then the communications architecture is implemented by using ZigBee sensor nodes. The implemented architecture also makes use of Bluetooth Low Energy beacons, an Android app, a decentralized database and fog computing gateways, whose performance is evaluated in terms of response latency and processing rate. Results show that the proposed system is able to deliver information to the drivers fast, with no need for relying on remote servers. As a consequence, the presented development methodology and communications evaluation tool can be useful for future smart parking developers, which can determine the optimal locations of the wireless transceivers during the simulation stage and then deploy a system that can provide fast responses and decentralized services.