Person: Araiz Vega, Miguel
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Araiz Vega
First Name
Miguel
person.page.departamento
Ingeniería
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
0000-0002-7674-0078
person.page.upna
811140
Name
17 results
Search Results
Now showing 1 - 10 of 17
Publication Open Access Experimental validation and development of an advanced computational model of a transcritical carbon dioxide vapour compression cycle with a thermoelectric subcooling system(Elsevier, 2022) Casi Satrústegui, Álvaro; Aranguren Garacochea, Patricia; Sánchez, Daniel; Araiz Vega, Miguel; Cabello, Ramón; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; IngenieríaThe inclusion of a thermoelectric subcooler as an alternative to increment the performance of a vapour compression cycle has been proved promising when properly designed and operated for low-medium power units. In this work, a computational model that simulates the behaviour of a carbon dioxide transcritical vapour compression cycle in conjunction with a thermoelectric subcooler system is presented. The computational tool is coded in Matlab and uses Refprop V9.1 to calculate the properties of the refrigerant at each point of the refrigeration cycle. Working conditions, effect of the heat exchangers of the subcooling system, temperature dependent thermoelectric properties, thermal contact resistances and the four thermoelectric effects are taken into account to increment its accuracy. The model has been validated using experimental data to prove the reliability and accuracy of the results obtained and shows deviations between the ±7% for the most relevant outputs. Using the validated computational tool a 13.6 % COP improvement is predicted when optimizing the total number of thermoelectric modules of the subcooling system. The computational experimentally validated tool is properly fit to aid in the design and operation of thermoelectric subcooling systems, being able to predict the optimal configuration and operation settings for the whole refrigeration plant.Publication Open Access Experimental evidence of the viability of thermoelectric generators to power volcanic monitoring stations(MDPI, 2020) Catalán Ros, Leyre; Garacochea Sáenz, Amaia; Casi Satrústegui, Álvaro; Araiz Vega, Miguel; Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; IngenieríaAlthough there is an important lack of commercial thermoelectric applications mainly due to their low efficiency, there exist some cases in which thermoelectric generators are the best option thanks to their well-known advantages, such as reliability, lack of maintenance and scalability. In this sense, the present paper develops a novel thermoelectric application in order to supply power to volcanic monitoring stations, making them completely autonomous. These stations become indispensable in any volcano since they are able to predict eruptions. Nevertheless, they present energy supply difficulties due to the absence of power grid, the remote access, and the climatology. As a solution, this work has designed a new integral system composed of thermoelectric generators with high efficiency heat exchangers, and its associated electronics, developed thanks to Internet of Things (IoT) technologies. Thus, the heat emitted from volcanic fumaroles is transformed directly into electricity with thermoelectric generators with passive heat exchangers based on phase change, leading to a continuous generation without moving parts that powers different sensors, the information of which is emitted via LoRa. The viability of the solution has been demonstrated both at the laboratory and at a real volcano, Teide (Canary Islands, Spain), where a compact prototype has been installed in an 82 C fumarole. The results obtained during more than eight months of operation prove the robustness and durability of the developed generator, which has been in operation without maintenance and under several kinds of meteorological conditions, leading to an average generation of 0.49W and a continuous emission over more than 14 km.Publication Open Access Auxiliary consumption: a necessary energy that affects thermoelectric generation(Elsevier, 2018) Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Astrain Ulibarrena, David; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen IngeniaritzaWaste heat recovery can apply to a wide range of applications, from transportation, or industries to domestic appliances. Thermoelectric generation technology applied to those cases could produce electrical energy and thus improve their efficiency. A validated computational methodology, which simulates the behavior of any thermoelectric generator and calculates the energy consumption of the auxiliary equipment involved, has been used to determine the potential of waste heat harvesting. The usable energy, the net energy, generated has to be maximized, not only the thermoelectric generation has to be maximized, but also the consumption of the auxiliary equipment has to be minimized, or if possible eliminated. Heat exchangers with a liquid as the heat carrier procure high thermoelectric generations, as their thermal resistances are very low, nevertheless when the consumption of their auxiliary consumption is borne in mind, their use is not that promising. The optimal thermoelectric energy obtained from the flue gases of a real industry using these dissipation systems is 119 MWh/year, while the maximum net energy is 73 MWh/year due to the consumption of the auxiliary equipment. The latest scenario does not only represent a 40% reduction from the optimal thermoelectric generation but also a different optimal working point. The complete elimination of the auxiliary equipment using novel biphasic thermosyphons with free convection at the same application produces a net energy of 128 MWh/year. This novel dissipation technology presents an increase on the thermoelectric generation due to its low thermal resistances, but above all due to the elimination of the auxiliary consumption.Publication Open Access Computational study of geothermal thermoelectric generators with phase change heat exchangers(Elsevier, 2020) Catalán Ros, Leyre; Araiz Vega, Miguel; Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; IngenieríaThe use of thermoelectric generators with phase change heat exchangers has demonstrated to be an interesting and environmentally friendly alternative to enhanced geothermal systems (EGS) in shallow hot dry rock fields (HDR), since rock fracture is avoided. The present paper studies the possibilities of the former proposal in a real location: Timanfaya National Park (Canary Islands, Spain), one of the greatest shallow HDR fields in the world, with 5000 m2 of characterized geothermal anomalies presenting temperatures up to 500 °C at only 2 m deep. For this purpose, a computational model based on the thermal-electrical analogy has been developed and validated thanks to a real prototype, leading to a relative error of less than 8%. Based on this model, two prototypes have been designed and studied for two different areas within the park, varying the size of the heat exchangers and the number of thermoelectric modules installed. As a result, the potential of the solution is demonstrated, leading to an annual electricity generation of 681.53 MWh thanks to the scalability of thermoelectric generators. This generation is obtained without moving parts nor auxiliary consumption, thus increasing the robustness of the device and removing maintenance requirements.Publication Open Access Experimental evaluation of a transcritical CO2 refrigeration facility working with an internal heat exchanger and a thermoelectric subcooler: performance assessment and comparative(Elsevier, 2022) Casi Satrústegui, Álvaro; Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Sánchez, Daniel; Cabello, Ramón; Astrain Ulibarrena, David; Ingeniería; Ingeniaritza; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe use of carbon dioxide in transcritical state has become one of the most used solutions to comply with the F-Gas directive and reduce greenhouse gases emissions from refrigeration systems at high ambient temperatures. For low-medium power units, the commonly used solutions to improve the efficiency such as the ejector, multiple compressor arrangements, mechanical subcooler, etc., add complexity and increase the cost of the refrigeration facility, which is not ideal for small units. In this low-medium power range, two technologies stand out to increase the performance of a carbon dioxide transcritical cycle: the internal heat exchanger and the thermoelectric subcooler. This study brings a complete research in which both solutions have been tested in the same experimental transcritical carbon dioxide refrigeration facility under the same working conditions. It focuses on the real performance of both systems and discusses the strengths and weaknesses of using an internal heat exchanger or a thermoelectric subcooler. The results show that the thermoelectric subcooler outperforms the internal heat exchanger in both the coefficient of performance and the cooling capacity while also being a more controllable and flexible solution.Publication Open Access Improvements in the cooling capacity and the COP of a transcritical CO 2 refrigeration plant operating with a thermoelectric subcooling system(Elsevier, 2019) Astrain Ulibarrena, David; Merino Vicente, Amaya; Catalán Ros, Leyre; Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Sánchez, Daniel; Cabello, Ramón; Llopis, R.; Ingeniaritza; Institute of Smart Cities - ISC; IngenieríaRestrictive environmental regulations are driving the use of CO 2 as working fluid in commercial vapour compression plants due to its ultra-low global warming potential (GWP 100 = 1) and its natural condition. However, at high ambient temperatures transcritical operating conditions are commonly achieved causing low energy efficiencies in refrigeration facilities. To solve this issue, several improvements have been implemented, especially in large centralized plants where ejectors, parallel compressors or subcooler systems, among others, are frequently used. Despite their good results, these measures are not suitable for small-capacity systems due mainly to the cost and the complexity of the system. Accordingly, this work presents a new subcooling system equipped with thermoelectric modules (TESC), which thanks to its simplicity, low cost and easy control, results very suitable for medium and small capacity plants. The developed methodology finds the gas-cooler pressure and the electric voltage supplied to the TESC system that maximizes the overall COP of the plant taking into account the ambient temperature, the number of thermoelectric modules used and the thermal resistance of the heat exchangers included in the TESC. The obtained results reveal that, with 20 thermoelectric modules, an improvement of 20% in terms of COP and of 25.6% regarding the cooling capacity can be obtained compared to the base cycle of CO 2 of a small cooling plant refrigerated by air. Compared to a cycle that uses an internal heat exchanger IHX, the improvements reach 12.2% and 19.5% respectively.Publication Open Access Geothermal thermoelectric generator for Timanfaya National Park(2019) Catalán Ros, Leyre; Astrain Ulibarrena, David; Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Ingeniaritza; Institute of Smart Cities - ISC; IngenieríaDespite being one of the largest renewable sources, geothermal energy is not widely utilized for electricity generation. In the case of shallow Hot Dry Rock (HDR) fields, thermoelectric generators can entail a sustainable alternative to Enhanced Geothermal Systems (EGS). The present work studies two configurations of thermoelectric generators for Timanfaya National Park (Spain), one of the most important Hot Dry Rock fields in the world, with temperatures of 500°C at only 3 meters deep. The first configuration includes biphasic thermosyphons as heat exchangers for both sides, leading to a completely passive thermoelectric generator. The second configuration uses fin dissipators as cold-side heat exchangers.Publication Embargo New opportunities for electricity generation in shallow hot dry rock fields: a study of thermoelectric generators with different heat exchangers(Elsevier, 2019) Catalán Ros, Leyre; Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Pérez Artieda, Miren Gurutze; Astrain Ulibarrena, David; Institute of Smart Cities - ISCDespite being one of the largest renewable sources, geothermal energy is not widely utilized for electricity generation. In order to leverage shallow hot dry rock (HDR) fields, the present paper proposes an alternative to enhanced geothermal systems (EGS): thermoelectric generators. Based on the conditions of Timanfaya National Park, a prototype has been built to experimentally analyze the feasibility of the proposed solution. The prototype is composed by a two phase closed thermosyphon (TPCT) as hot side heat exchanger, two thermoelectric modules, and it considers different cold side heat exchangers: fin dissipators assisted by a fan and loop thermosyphons, both with various geometries. Experiments have demonstrated that loop thermosyphons represent the best alternative due to their low thermal resistance and, especially, due to their lack of auxiliary consumption, leading to a maximum net power generation of 3.29 W per module with a temperature difference of 180 °C (200 °C in the hot side and 20 °C as ambient temperature), 54% more than with fin dissipators. Hence, there exists a new opportunity for electricity generation in shallow hot dry rock fields: thermoelectric generators with biphasic thermosyphons as heat exchangers, a patented and robust solution.Publication Open Access Thermoelectric generator with passive biphasic thermosyphon heat exchanger for waste heat recovery: design and experimentation(MDPI, 2021) Araiz Vega, Miguel; Casi Satrústegui, Álvaro; Catalán Ros, Leyre; Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako GobernuaOne of the measures to fight against the current energy situation and reduce the energy consumption at an industrial process is to recover waste heat and transform it into electric power. Thermoelectric generators can be used for that purpose but there is a lack of experimental studies that can bring this technology closer to reality. This work presents the design, optimizations and development of two devices that are experimented and compared under the same working conditions. The hot side heat exchanger of both generators has been designed using a computational fluid dynamics software and for the cold side of the generators two technologies have been analysed: a finned dissipater that uses a fan and free convection biphasic thermosyphon. The results obtained show a maximum net generation of 6.9 W in the thermoelectric generator with the finned dissipater; and 10.6 W of power output in the generator with the biphasic thermosyphon. These results remark the importance of a proper design of the heat exchangers, trying to get low thermal resistances at both sides of the thermoelectric modules, as well as, the necessity of considering the auxiliary consumption of the equipment employed.Publication Open Access Gamification and a low-cost laboratory equipment aimed to boost vapor compresion refrigeration learning(OmniaScience, 2022) Aranguren Garacochea, Patricia; Sánchez García-Vacas, Daniel; Casi Satrústegui, Álvaro; Araiz Vega, Miguel; Catalán Ros, Leyre; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe nowadays European educational framework boosts applying the learned theoretical concepts to real situations. Hence, practice sessions are key resources to present students direct applications of the theoretical concepts shown in class. Thus, developing new educational equipment and practice sessions oriented to bringing theoretical knowledge closer to practice should be one of the objectives of teachers. The present work describes a solution proposed by lectures of two Spanish universities looking to increase the knowledge of their engineering students. Along the years, these docents have noticed the lack of connection between the theoretical and practical knowledge among their students, drastically harming their learning procedure. Thus, in order to deepen into practical learning, a teaching methodology involving low-cost prototypes of vapor compression systems and a gamification method to help the students understand the concepts is proposed. The proposed methodology is expected to make a big positive impact on the results obtained by the students, taking into account the preliminary results reached.