Araiz Vega, Miguel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Araiz Vega

First Name

Miguel

person.page.departamento

Ingeniería

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 32
  • PublicationOpen Access
    Experimental development of a novel thermoelectric generator without moving parts to harness shallow hot dry rock fields
    (Elsevier, 2022) Alegría Cía, Patricia; Catalán Ros, Leyre; Araiz Vega, Miguel; Rodríguez García, Antonio; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería
    Nowadays, geothermal energy in shallow hot dry rock fields is not exploited enough due to the high economic and environmental impact as well as the lack of scalability of the existing technologies. Here, thermoelectricity has a great future potential due to its robustness, absence of moving parts and modularity. However, the efficiency of a thermoelectric generator depends highly on the heat exchangers. In this work, a novel geothermal thermoelectric generator is experimentally developed, characterizing different configurations of biphasic heat exchangers to obtain low thermal resistances that allow the maximum efficiency in the thermoelectric modules. As a result, robust and passive heat exchangers were obtained with thermal resistances of 0.07 K/W and 0.4 K/W in the hot and cold sides, respectively. The geothermal thermoelectric generator was built with the most effective heat exchangers and was experimented under different temperature and convection conditions, generating 36 W (17 W by a prototype with 10 modules and 19 W by a prototype with 6 modules) for a temperature difference of 160 °C between the heat source and the environment. Furthermore, the experimental development showed that it is possible to increase electricity generation with a more compact generator, since a decrease in the number of modules from 10 to 6 increases the efficiency from 3.72% to 4.06%. With this research, the feasibility of a novel and robust geothermal thermoelectric generator whose working principle is phase change has been experimentally demonstrated, as well as the importance of compactness to maximize its efficiency and thus, power generation.
  • PublicationOpen Access
    Computer simulations of silicide-tetrahedrite thermoelectric generators
    (MDPI, 2022) Coelho, Rodrigo; Casi Satrústegui, Álvaro; Araiz Vega, Miguel; Astrain Ulibarrena, David; Branco Lopes, Elsa; Brito, Francisco P.; Gonçalves, Antonio P.; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC
    With global warming and rising energy demands, it is important now than ever to transit to renewable energy systems. Thermoelectric (TE) devices can present a feasible alternative to generate clean energy from waste heat. However, to become attractive for large-scale applications, such devices must be cheap, efficient, and based on ecofriendly materials. In this study, the potential of novel silicide-tetrahedrite modules for energy generation was examined. Computer simulations based on the finite element method (FEM) and implicit finite difference method (IFDM) were performed. The developed computational models were validated against data measured on a customized system working with commercial TE devices. The models were capable of predicting the TEGs’ behavior with low deviations (≤10%). IFDM was used to study the power produced by the silicide-tetrahedrite TEGs for different ∆T between the sinks, whereas FEM was used to study the temperature distributions across the testing system in detail. To complement these results, the influence of the electrical and thermal contact resistances was evaluated. High thermal resistances were found to affect the devices ∆T up to ~15%, whereas high electrical contact resistances reduced the power output of the silicide-tetrahedrite TEGs by more than ~85%.
  • PublicationOpen Access
    Computational study of geothermal thermoelectric generators with phase change heat exchangers
    (Elsevier, 2020) Catalán Ros, Leyre; Araiz Vega, Miguel; Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería
    The use of thermoelectric generators with phase change heat exchangers has demonstrated to be an interesting and environmentally friendly alternative to enhanced geothermal systems (EGS) in shallow hot dry rock fields (HDR), since rock fracture is avoided. The present paper studies the possibilities of the former proposal in a real location: Timanfaya National Park (Canary Islands, Spain), one of the greatest shallow HDR fields in the world, with 5000 m2 of characterized geothermal anomalies presenting temperatures up to 500 °C at only 2 m deep. For this purpose, a computational model based on the thermal-electrical analogy has been developed and validated thanks to a real prototype, leading to a relative error of less than 8%. Based on this model, two prototypes have been designed and studied for two different areas within the park, varying the size of the heat exchangers and the number of thermoelectric modules installed. As a result, the potential of the solution is demonstrated, leading to an annual electricity generation of 681.53 MWh thanks to the scalability of thermoelectric generators. This generation is obtained without moving parts nor auxiliary consumption, thus increasing the robustness of the device and removing maintenance requirements.
  • PublicationOpen Access
    Experimental evaluation of a transcritical CO2 refrigeration facility working with an internal heat exchanger and a thermoelectric subcooler: performance assessment and comparative
    (Elsevier, 2022) Casi Satrústegui, Álvaro; Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Sánchez, Daniel; Cabello, Ramón; Astrain Ulibarrena, David; Ingeniería; Ingeniaritza; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The use of carbon dioxide in transcritical state has become one of the most used solutions to comply with the F-Gas directive and reduce greenhouse gases emissions from refrigeration systems at high ambient temperatures. For low-medium power units, the commonly used solutions to improve the efficiency such as the ejector, multiple compressor arrangements, mechanical subcooler, etc., add complexity and increase the cost of the refrigeration facility, which is not ideal for small units. In this low-medium power range, two technologies stand out to increase the performance of a carbon dioxide transcritical cycle: the internal heat exchanger and the thermoelectric subcooler. This study brings a complete research in which both solutions have been tested in the same experimental transcritical carbon dioxide refrigeration facility under the same working conditions. It focuses on the real performance of both systems and discusses the strengths and weaknesses of using an internal heat exchanger or a thermoelectric subcooler. The results show that the thermoelectric subcooler outperforms the internal heat exchanger in both the coefficient of performance and the cooling capacity while also being a more controllable and flexible solution.
  • PublicationOpen Access
    Experimental evidence of the viability of thermoelectric generators to power volcanic monitoring stations
    (MDPI, 2020) Catalán Ros, Leyre; Garacochea Sáenz, Amaia; Casi Satrústegui, Álvaro; Araiz Vega, Miguel; Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería
    Although there is an important lack of commercial thermoelectric applications mainly due to their low efficiency, there exist some cases in which thermoelectric generators are the best option thanks to their well-known advantages, such as reliability, lack of maintenance and scalability. In this sense, the present paper develops a novel thermoelectric application in order to supply power to volcanic monitoring stations, making them completely autonomous. These stations become indispensable in any volcano since they are able to predict eruptions. Nevertheless, they present energy supply difficulties due to the absence of power grid, the remote access, and the climatology. As a solution, this work has designed a new integral system composed of thermoelectric generators with high efficiency heat exchangers, and its associated electronics, developed thanks to Internet of Things (IoT) technologies. Thus, the heat emitted from volcanic fumaroles is transformed directly into electricity with thermoelectric generators with passive heat exchangers based on phase change, leading to a continuous generation without moving parts that powers different sensors, the information of which is emitted via LoRa. The viability of the solution has been demonstrated both at the laboratory and at a real volcano, Teide (Canary Islands, Spain), where a compact prototype has been installed in an 82 C fumarole. The results obtained during more than eight months of operation prove the robustness and durability of the developed generator, which has been in operation without maintenance and under several kinds of meteorological conditions, leading to an average generation of 0.49W and a continuous emission over more than 14 km.
  • PublicationOpen Access
    Auxiliary consumption: a necessary energy that affects thermoelectric generation
    (Elsevier, 2018) Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Astrain Ulibarrena, David; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    Waste heat recovery can apply to a wide range of applications, from transportation, or industries to domestic appliances. Thermoelectric generation technology applied to those cases could produce electrical energy and thus improve their efficiency. A validated computational methodology, which simulates the behavior of any thermoelectric generator and calculates the energy consumption of the auxiliary equipment involved, has been used to determine the potential of waste heat harvesting. The usable energy, the net energy, generated has to be maximized, not only the thermoelectric generation has to be maximized, but also the consumption of the auxiliary equipment has to be minimized, or if possible eliminated. Heat exchangers with a liquid as the heat carrier procure high thermoelectric generations, as their thermal resistances are very low, nevertheless when the consumption of their auxiliary consumption is borne in mind, their use is not that promising. The optimal thermoelectric energy obtained from the flue gases of a real industry using these dissipation systems is 119 MWh/year, while the maximum net energy is 73 MWh/year due to the consumption of the auxiliary equipment. The latest scenario does not only represent a 40% reduction from the optimal thermoelectric generation but also a different optimal working point. The complete elimination of the auxiliary equipment using novel biphasic thermosyphons with free convection at the same application produces a net energy of 128 MWh/year. This novel dissipation technology presents an increase on the thermoelectric generation due to its low thermal resistances, but above all due to the elimination of the auxiliary consumption.
  • PublicationOpen Access
    Impact of a thermoelectric subcooler heat exchanger on a carbon dioxide transcritical refrigeration facility
    (Elsevier, 2022) Casi Satrústegui, Álvaro; Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Alegría Cía, Patricia; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsita
    To improve the performance of vapour compression refrigeration cycles, the inclusion of a thermoelectric subcooler for low-medium power units has been the focus of recent studies due to its robustness, compactness and simplicity of operation. In thermoelectric systems, it has been demonstrated that the heat exchangers used in the hot and cold side of the thermoelectric modules have a critical impact in the performance of the system. This influence has not yet been studied for thermoelectric subcooling systems in vapour compression cycles. This work, for the first time, evaluates the impact that the heat exchangers of a thermoelectric subcooler, included in a transcritical carbon dioxide refrigeration cycle, have, in the performance of the refrigeration cycle. The influence is quantified in terms of: optimum working conditions, coefficient of performance and cooling capacity. The results show that, through an optimization of the heat exchangers of the thermoelectric subcooler, the performance improvements on the coefficient of performance using this technology are boosted from 11.96 to 14.75 % and the upgrade in the cooling capacity of the system rises from 21.4 to 26.3 %. Moreover, the optimum gas-cooler working pressure of the system is reduced and the optimum voltage supplied to the thermoelectric modules increases.
  • PublicationOpen Access
    Thermoelectric generators for waste heat harvesting: a computational and experimental approach
    (Elsevier, 2017) Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    Waste heat generation has a widespread presence into daily applications, however, due to the low-temperature grade which presents, its exploitation with the most common technologies is complicated. Thermoelectricity presents the possibility of harvesting any temperature grade heat; besides it also includes many other advantages which make thermoelectric generators perfect for generating electric power from waste heat. A prototype divided into two levels along the chimney which uses the waste heat of a combustion has been built. The experimentation has been used to determine the parameters that influence the generation and to validate a generic computational model able to predict the thermoelectric generation of any application, but specially applications where waste heat is harvested. The temperature and mass flow of the flue gases and the load resistance determine the generation, and consequently, these parameters have been included into the model, among many others. This computational model incorporates all the elements included into the generators (heat exchangers, ceramics, unions) and all the thermoelectric phenomena and moreover, it takes into account the temperature loss of the flue gases while circulating along the thermoelectric generator. The built prototype presents a 65 % reduction in the generation of the two levels of the thermoelectric generator due to the temperature loss of the flue gases. The general computational model predicts the thermoelectric generation with an accuracy of the ±12 %.
  • PublicationOpen Access
    Prospects of waste-heat recovery from a real industry using thermoelectric generators: economic and power output analysis
    (Elsevier, 2020) Araiz Vega, Miguel; Casi Satrústegui, Álvaro; Catalán Ros, Leyre; Martínez Echeverri, Álvaro; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2018-000101
    One of the options to reduce industrial energy costs and the environmental impact is to recover the waste-heat produce in some processes. This paper proposes the use of thermoelectric generators at a stone wool manufacturing plant to transform waste-heat from a hot gas flow into useful electricity. A combination of two computational models, previously developed and validated, has been used to perform the optimization from a double point of view: power output and economic cost. The proposed thermoelectric generator includes fin dissipaters and biphasic thermosyphons as the hot and cold side heat exchangers respectively. The model takes into account the temperature drop along the duct where the gases flow, the electric consumption of the auxiliary equipment, and the configuration and geometry of the heat exchangers. After the simulations a maximum net power production of 45 838 W is achieved considering an occupancy ratio of 0.40 and a fin spacing of 10 mm. The installation cost is minimized to 10.6 €/W with an occupancy ratio of 0.24. Besides, the Levelised Cost of Electricity, LCOE, is estimated for a thermoelectric generator for the first time. It is necessary to use standar methodologies to compare this technology to others. The LCOE estimated for the proposed design is around 15 c€/kWh within the ranges of current energy sources, proving, in this way, the capabilities of waste-heat recovery from industrial processes at reasonable prices with thermoelectric generators.
  • PublicationOpen Access
    New opportunities for electricity generation in shallow hot dry rock fields: a study of thermoelectric generators with different heat exchangers
    (Elsevier, 2019) Catalán Ros, Leyre; Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Pérez Artieda, Miren Gurutze; Astrain Ulibarrena, David; Institute of Smart Cities - ISC
    Despite being one of the largest renewable sources, geothermal energy is not widely utilized for electricity generation. In order to leverage shallow hot dry rock (HDR) fields, the present paper proposes an alternative to enhanced geothermal systems (EGS): thermoelectric generators. Based on the conditions of Timanfaya National Park, a prototype has been built to experimentally analyze the feasibility of the proposed solution. The prototype is composed by a two phase closed thermosyphon (TPCT) as hot side heat exchanger, two thermoelectric modules, and it considers different cold side heat exchangers: fin dissipators assisted by a fan and loop thermosyphons, both with various geometries. Experiments have demonstrated that loop thermosyphons represent the best alternative due to their low thermal resistance and, especially, due to their lack of auxiliary consumption, leading to a maximum net power generation of 3.29 W per module with a temperature difference of 180 °C (200 °C in the hot side and 20 °C as ambient temperature), 54% more than with fin dissipators. Hence, there exists a new opportunity for electricity generation in shallow hot dry rock fields: thermoelectric generators with biphasic thermosyphons as heat exchangers, a patented and robust solution.