Person: Araiz Vega, Miguel
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Araiz Vega
First Name
Miguel
person.page.departamento
Ingeniería
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
0000-0002-7674-0078
person.page.upna
811140
Name
19 results
Search Results
Now showing 1 - 10 of 19
Publication Unknown Enhanced behaviour of a passive thermoelectric generator with phase change heat exchangers and radiative cooling(Elsevier, 2023) Astrain Ulibarrena, David; Jaramillo-Fernández, Juliana; Araiz Vega, Miguel; Francone, Achille; Catalán Ros, Leyre; Jacobo-Martín, Alejandra; Alegría Cía, Patricia; Sotomayor-Torres, Clivia M.; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaHeat exchangers are essential to optimize the efficiency of Thermoelectric Generators (TEGs), and heat pipes without fans have proven to be an advantageous design as it maintains the characteristic robustness of thermoelectricity, low maintenance and lack of moving parts. However, the efficiency of these heat exchangers decreases under natural convection conditions, reducing their heat transfer capacity and thus thermoelectric power production. This work reports on a novel heat exchanger that combines for the first time, phase change and radiative cooling in a thermoelectric generator to improve its efficiency and increase the production of electrical energy, specially under natural convection. For this, two thermoelectric generators with heat-pipes on their cold sides have been tested: one with the radiative coating and the other without it. Their thermal resistances have been determined and the electric power output was compared under different working conditions, namely, natural convection and forced convection indoors and outdoors. The experimental tests show a clear reduction of the heat exchanger thermal resistance thanks to the radiative coating and consequently, an increase of electric production 8.3 % with outdoor wind velocities of 1 m/s, and up to 54.8 % under free convection conditions. The application of the radiative surface treatment is shown to result in a more stable electrical energy production, suppressing the drastic decrease in the generated electric power that occurs in thermoelectric generators when they work under free convection.Publication Unknown Thermoelectric heat recovery in a real industry: from laboratory optimization to reality(Elsevier, 2021) Casi Satrústegui, Álvaro; Araiz Vega, Miguel; Catalán Ros, Leyre; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2018-000101Thermoelectricity, in the form of thermoelectric generators, holds a great potential in waste heat recovery, this potential has been studied and proved in several laboratory and theoretical works. By the means of a thermoelectric generator, part of the energy that normally is wasted in a manufacturing process, can be transformed into electricity, however, implementing this technology in real industries still remains a challenge and on-site tests need to be performed in order to prove the real capabilities of this technology. In this work, a computational model to simulate the behaviour of a thermoelectric generator that harvest waste heat from hot fumes is developed. Using the computational model an optimal configuration for a thermoelectric generator is obtained, also an experimental study of the performance of different heat pipes working as cold side heat exchangers is carried out in order to optimize the performance of the whole thermoelectric generator, thermal resistances of under 0,25 K/W are obtained. The optimized configuration of the thermoelectric generator has been built, installed and tested under real conditions at a rockwool manufacturing plant and experimental data has been obtained during the 30 days field test period. Results show that 4.6 W of average electrical power are produced during the testing period with an efficiency of 2.38%. Moreover, the computational model is validated using this experimental data. Furthermore, the full harvesting potential of an optimized designed that takes advantage of the whole pipe is calculated using the validated computational model, resulting in 30.8 MWh of energy harvested during a sample year which could meet the demand of 8.34 Spanish average households.Publication Unknown Simulation of thermoelectric heat pumps in nearly zero energy buildings: why do all models seem to be right?(Elsevier, 2021) Martínez Echeverri, Álvaro; Díaz de Garayo, Sergio; Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Catalán Ros, Leyre; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISCThe use of thermoelectric heat pumps for heat, ventilation, and air conditioning in nearly-zero-energy buildings is one of the most promising applications of thermoelectrics. However, simulation works in the literature are predominately based on the simple model, which was proven to exhibit significant deviations from experimental results. Nine modelling techniques have been compared in this work, according to statistical methods based on uncertainty analysis, in terms of predicted coefficient of performance and cooling power. These techniques come from the combination of three simulation models for thermoelectric modules (simple model, improved model, electric analogy) and five methods for implementing the thermoelectric properties. The main conclusion is that there is no statistical difference in the mean values of coefficient of performance and cooling power provided by these modelling techniques under all the scenarios, at 95% level of confidence. However, differences appear in the precision of these results in terms of uncertainty of the confidence intervals. Minimum values of uncertainty are obtained when the thermal resistance ratio approaches 0.1, being ±8% when using temperature-dependent expressions for the thermoelectric properties, ±18% when using Lineykin's method, and ± 25% when using Chen's method. The best combination is that composed of the simple model and temperature-dependent expressions for the thermoelectric properties. Additionally, if low values of resistance ratio are anticipated, empirical expressions from the literature can be used for the thermal resistance of the heat exchangers; for high values, though, experimental tests should be deployed, especially for the heat exchanger on the hot side.Publication Unknown Prospects of autonomous volcanic monitoring stations: experimental investigation on thermoelectric generation from fumaroles(MDPI, 2020) Catalán Ros, Leyre; Araiz Vega, Miguel; Padilla, Germán D.; Hernández, Pedro A.; Pérez, Nemesio M.; García de la Noceda, Celestino; Albert, José F.; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; IngenieríaFumaroles represent evidence of volcanic activity, emitting steam and volcanic gases at temperatures between 70 and 100 °C. Due to the well-known advantages of thermoelectricity, such as reliability, reduced maintenance and scalability, the present paper studies the possibilities of thermoelectric generators, devices based on solid-state physics, to directly convert fumaroles heat into electricity due to the Seebeck effect. For this purpose, a thermoelectric generator composed of two bismuth-telluride thermoelectric modules and heat pipes as heat exchangers was installed, for the first time, at Teide volcano (Canary Islands, Spain), where fumaroles arise in the surface at 82 °C. The installed thermoelectric generator has demonstrated the feasibility of the proposed solution, leading to a compact generator with no moving parts that produces a net generation between 0.32 and 0.33 W per module given a temperature difference between the heat reservoirs encompassed in the 69–86 °C range. These results become interesting due to the possibilities of supplying power to the volcanic monitoring stations that measure the precursors of volcanic eruptions, making them completely autonomous. Nonetheless, in order to achieve this objective, corrosion prevention measures must be taken because the hydrogen sulfide contained in the fumaroles reacts with steam, forming sulfuric acid.Publication Unknown Computer simulations of silicide-tetrahedrite thermoelectric generators(MDPI, 2022) Coelho, Rodrigo; Casi Satrústegui, Álvaro; Araiz Vega, Miguel; Astrain Ulibarrena, David; Branco Lopes, Elsa; Brito, Francisco P.; Gonçalves, Antonio P.; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISCWith global warming and rising energy demands, it is important now than ever to transit to renewable energy systems. Thermoelectric (TE) devices can present a feasible alternative to generate clean energy from waste heat. However, to become attractive for large-scale applications, such devices must be cheap, efficient, and based on ecofriendly materials. In this study, the potential of novel silicide-tetrahedrite modules for energy generation was examined. Computer simulations based on the finite element method (FEM) and implicit finite difference method (IFDM) were performed. The developed computational models were validated against data measured on a customized system working with commercial TE devices. The models were capable of predicting the TEGs’ behavior with low deviations (≤10%). IFDM was used to study the power produced by the silicide-tetrahedrite TEGs for different ∆T between the sinks, whereas FEM was used to study the temperature distributions across the testing system in detail. To complement these results, the influence of the electrical and thermal contact resistances was evaluated. High thermal resistances were found to affect the devices ∆T up to ~15%, whereas high electrical contact resistances reduced the power output of the silicide-tetrahedrite TEGs by more than ~85%.Publication Unknown Experimental development of a novel thermoelectric generator without moving parts to harness shallow hot dry rock fields(2021) Alegría Cía, Patricia; Rodríguez García, Antonio; Catalán Ros, Leyre; Astrain Ulibarrena, David; Araiz Vega, Miguel; Ingeniería; Institute of Smart Cities - ISC; IngeniaritzaNowadays, geothermal energy in shallow hot dry rocks is not exploited enough due to the high economic and environmental impact as well as the lack of scalability of the existing technologies. Here, thermoelectricity has a great future potential due to its robustness, absence of moving parts and modularity. With this research, the feasibility of a novel and robust geothermal thermoelectric generator whose working principle is phase change has been experimentally demonstrated, as well as the importance of compactness to maximize its efficiency and thus, power generation.Publication Unknown Experimental validation and development of an advanced computational model of a transcritical carbon dioxide vapour compression cycle with a thermoelectric subcooling system(Elsevier, 2022) Casi Satrústegui, Álvaro; Aranguren Garacochea, Patricia; Sánchez, Daniel; Araiz Vega, Miguel; Cabello, Ramón; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; IngenieríaThe inclusion of a thermoelectric subcooler as an alternative to increment the performance of a vapour compression cycle has been proved promising when properly designed and operated for low-medium power units. In this work, a computational model that simulates the behaviour of a carbon dioxide transcritical vapour compression cycle in conjunction with a thermoelectric subcooler system is presented. The computational tool is coded in Matlab and uses Refprop V9.1 to calculate the properties of the refrigerant at each point of the refrigeration cycle. Working conditions, effect of the heat exchangers of the subcooling system, temperature dependent thermoelectric properties, thermal contact resistances and the four thermoelectric effects are taken into account to increment its accuracy. The model has been validated using experimental data to prove the reliability and accuracy of the results obtained and shows deviations between the ±7% for the most relevant outputs. Using the validated computational tool a 13.6 % COP improvement is predicted when optimizing the total number of thermoelectric modules of the subcooling system. The computational experimentally validated tool is properly fit to aid in the design and operation of thermoelectric subcooling systems, being able to predict the optimal configuration and operation settings for the whole refrigeration plant.Publication Open Access Computational study of geothermal thermoelectric generators with phase change heat exchangers(Elsevier, 2020) Catalán Ros, Leyre; Araiz Vega, Miguel; Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; IngenieríaThe use of thermoelectric generators with phase change heat exchangers has demonstrated to be an interesting and environmentally friendly alternative to enhanced geothermal systems (EGS) in shallow hot dry rock fields (HDR), since rock fracture is avoided. The present paper studies the possibilities of the former proposal in a real location: Timanfaya National Park (Canary Islands, Spain), one of the greatest shallow HDR fields in the world, with 5000 m2 of characterized geothermal anomalies presenting temperatures up to 500 °C at only 2 m deep. For this purpose, a computational model based on the thermal-electrical analogy has been developed and validated thanks to a real prototype, leading to a relative error of less than 8%. Based on this model, two prototypes have been designed and studied for two different areas within the park, varying the size of the heat exchangers and the number of thermoelectric modules installed. As a result, the potential of the solution is demonstrated, leading to an annual electricity generation of 681.53 MWh thanks to the scalability of thermoelectric generators. This generation is obtained without moving parts nor auxiliary consumption, thus increasing the robustness of the device and removing maintenance requirements.Publication Open Access Thermoelectric generator for high temperature geothermal anomalies: experimental development and field operation(Elsevier, 2023) Alegría Cía, Patricia; Catalán Ros, Leyre; Araiz Vega, Miguel; Casi Satrústegui, Álvaro; Astrain Ulibarrena, David; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn the current climate and energy context, it is important to develop technologies that permit increase the use of renewable sources such as geothermal energy. Enhancing the use of this renewable source is particularly important in some places, due to its availability and the enormous dependence on fossil fuels, as is the case of the Canary Islands. This work proposes the use of thermoelectric generators with heat exchangers working by phase change to transform the heat from the shallow high temperature geothermal anomalies on the island of Lanzarote directly into electricity, since the use of conventional geothermal power plants would not be possible because they would damage the protected environment. To bring this proposal to reality, this work has succeeded in developing and field-installing a geothermal thermoelectric generator that operates without moving parts thanks to its phase-change heat exchangers. This robust generator do not require maintenance nor auxiliary consumption, and produces a minimal environmental impact, it is noiseless, and the use of water as working fluid makes it completely harmless. The developed device consists of a thermosyphon as hot side heat exchanger, thermoelectric modules and cold side heat exchangers also based in phase change. Tests were carried out in the laboratory at various heat source temperatures and varying the number of thermoelectric modules. It was determined that installing more modules decreases the efficiency per module (from 4.83% with 4 modules to 4.59% with 8 modules at a temperature difference between sources of 235 °C), but for the number of modules tested the total power increases, so the field installation was carried out with 8 modules. After the good results in the laboratory, it was satisfactorily installed at Timanfaya National Park (Lanzarote, Spain) in a borehole with gases at 465 °C. This generator presents a maximum output power of 36 W (4.5 W per module), and is generating 286.94 kWh per year, demonstrating the great potential of the developed thermoelectric generators to build a larger-scale renewable installation.Publication Open Access Prospects of waste-heat recovery from a real industry using thermoelectric generators: economic and power output analysis(Elsevier, 2020) Araiz Vega, Miguel; Casi Satrústegui, Álvaro; Catalán Ros, Leyre; Martínez Echeverri, Álvaro; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2018-000101One of the options to reduce industrial energy costs and the environmental impact is to recover the waste-heat produce in some processes. This paper proposes the use of thermoelectric generators at a stone wool manufacturing plant to transform waste-heat from a hot gas flow into useful electricity. A combination of two computational models, previously developed and validated, has been used to perform the optimization from a double point of view: power output and economic cost. The proposed thermoelectric generator includes fin dissipaters and biphasic thermosyphons as the hot and cold side heat exchangers respectively. The model takes into account the temperature drop along the duct where the gases flow, the electric consumption of the auxiliary equipment, and the configuration and geometry of the heat exchangers. After the simulations a maximum net power production of 45 838 W is achieved considering an occupancy ratio of 0.40 and a fin spacing of 10 mm. The installation cost is minimized to 10.6 €/W with an occupancy ratio of 0.24. Besides, the Levelised Cost of Electricity, LCOE, is estimated for a thermoelectric generator for the first time. It is necessary to use standar methodologies to compare this technology to others. The LCOE estimated for the proposed design is around 15 c€/kWh within the ranges of current energy sources, proving, in this way, the capabilities of waste-heat recovery from industrial processes at reasonable prices with thermoelectric generators.