Araiz Vega, Miguel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Araiz Vega

First Name

Miguel

person.page.departamento

Ingeniería

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 20
  • PublicationOpen Access
    The importance of the assembly in thermoelectric generators
    (IntechOpen, 2018) Araiz Vega, Miguel; Catalán Ros, Leyre; Herrero Mola, Óscar; Pérez Artieda, Miren Gurutze; Rodríguez García, Antonio; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería
    Generally, in the optimization of thermoelectric generators, only the heat exchangers or the thermoelectric modules themselves are taken into account. However, the assembly of the generator as a whole is of vital importance since a bad contact or a thermal bridge can waste the performance of an optimal generator. In this sense, the present chapter analyzes experimentally the use of different interface materials to reduce the thermal contact resistance between the modules and the heat exchangers, the influence of the pressure distribution in the assembly as well as the effect of different insulating materials in order to reduce the thermal bridge between the exchangers. Thus, it has been demonstrated that a good assembly requires the implementation of thermal interface materials to ensure the microscopic contact between the heat exchangers and the modules, besides a uniform clamping pressure. Nevertheless, since this is normally achieved with screws, they represent a source of thermal bridges in conjunction with the small distance between the exchangers. In order to reduce heat losses due to thermal bridges, which can represent up to one-third of the incoming heat, an increment of the distance between the exchangers and the use of an insulator is recommended.
  • PublicationOpen Access
    Prospects of waste-heat recovery from a real industry using thermoelectric generators: economic and power output analysis
    (Elsevier, 2020) Araiz Vega, Miguel; Casi Satrústegui, Álvaro; Catalán Ros, Leyre; Martínez Echeverri, Álvaro; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2018-000101
    One of the options to reduce industrial energy costs and the environmental impact is to recover the waste-heat produce in some processes. This paper proposes the use of thermoelectric generators at a stone wool manufacturing plant to transform waste-heat from a hot gas flow into useful electricity. A combination of two computational models, previously developed and validated, has been used to perform the optimization from a double point of view: power output and economic cost. The proposed thermoelectric generator includes fin dissipaters and biphasic thermosyphons as the hot and cold side heat exchangers respectively. The model takes into account the temperature drop along the duct where the gases flow, the electric consumption of the auxiliary equipment, and the configuration and geometry of the heat exchangers. After the simulations a maximum net power production of 45 838 W is achieved considering an occupancy ratio of 0.40 and a fin spacing of 10 mm. The installation cost is minimized to 10.6 €/W with an occupancy ratio of 0.24. Besides, the Levelised Cost of Electricity, LCOE, is estimated for a thermoelectric generator for the first time. It is necessary to use standar methodologies to compare this technology to others. The LCOE estimated for the proposed design is around 15 c€/kWh within the ranges of current energy sources, proving, in this way, the capabilities of waste-heat recovery from industrial processes at reasonable prices with thermoelectric generators.
  • PublicationOpen Access
    Thermoelectric generator for high temperature geothermal anomalies: experimental development and field operation
    (Elsevier, 2023) Alegría Cía, Patricia; Catalán Ros, Leyre; Araiz Vega, Miguel; Casi Satrústegui, Álvaro; Astrain Ulibarrena, David; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In the current climate and energy context, it is important to develop technologies that permit increase the use of renewable sources such as geothermal energy. Enhancing the use of this renewable source is particularly important in some places, due to its availability and the enormous dependence on fossil fuels, as is the case of the Canary Islands. This work proposes the use of thermoelectric generators with heat exchangers working by phase change to transform the heat from the shallow high temperature geothermal anomalies on the island of Lanzarote directly into electricity, since the use of conventional geothermal power plants would not be possible because they would damage the protected environment. To bring this proposal to reality, this work has succeeded in developing and field-installing a geothermal thermoelectric generator that operates without moving parts thanks to its phase-change heat exchangers. This robust generator do not require maintenance nor auxiliary consumption, and produces a minimal environmental impact, it is noiseless, and the use of water as working fluid makes it completely harmless. The developed device consists of a thermosyphon as hot side heat exchanger, thermoelectric modules and cold side heat exchangers also based in phase change. Tests were carried out in the laboratory at various heat source temperatures and varying the number of thermoelectric modules. It was determined that installing more modules decreases the efficiency per module (from 4.83% with 4 modules to 4.59% with 8 modules at a temperature difference between sources of 235 °C), but for the number of modules tested the total power increases, so the field installation was carried out with 8 modules. After the good results in the laboratory, it was satisfactorily installed at Timanfaya National Park (Lanzarote, Spain) in a borehole with gases at 465 °C. This generator presents a maximum output power of 36 W (4.5 W per module), and is generating 286.94 kWh per year, demonstrating the great potential of the developed thermoelectric generators to build a larger-scale renewable installation.
  • PublicationOpen Access
    Design and optimization of thermoelectric generators for harnessing geothermal anomalies: a computational model and validation with experimental field results
    (Elsevier, 2024) Alegría Cía, Patricia; Catalán Ros, Leyre; Araiz Vega, Miguel; Erro Iturralde, Irantzu; Astrain Ulibarrena, David; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Thermoelectric generators have been recently proved to be a feasible alternative to harness hot dry rock fields with very promising results transforming the geothermal heat into electricity. This research deepens in the study of these generators, developing a versatile computational model that serves as a tool to design and optimize this type of thermoelectric generators. This tool is important to develop this thermoelectric technology on a large scale, to produce clean and renewable electrical energy especially in the Timanfaya National Park, in Lanzarote (Spain), where some of the most important shallow geothermal anomalies in the world are located, in order to promote self-consumption in this zone. However, it could be employed in other areas with different boundary conditions. The model, based in the finite difference method applied to the thermal-electrical analogy of a geothermal thermoelectric generator, has been validated with the experimental field results of two thermoelectric generators installed in two different zones of geothermal anomalies. It has achieved a relative error of less than 10% when predicting the power and between 0.5–1.6% in the annual energy generation, what makes it a very reliable and useful computational tool. The developed model has been employed for the first time to estimate the electrical energy that could be generated if harnessing the characterized area of anomalies in Lanzarote. Here, given the continuity of geothermal energy, 7.24 GWh per year could be generated, which means annually 1.03 MWh/m2.
  • PublicationOpen Access
    400 W facility of geothermal thermoelectric generators from hot dry rocks on the Canary Islands
    (Elsevier, 2025-06-01) Alegría Cía, Patricia; Pascual Lezaun, Nerea; Catalán Ros, Leyre; Araiz Vega, Miguel; Astrain Ulibarrena, David; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Geothermal energy has a great potential to be harnessed and requires a boost in technologies to enhance its use. The Canary Islands have a great dependence on fossil fuels, and Lanzarote has important geothermal anomalies currently unexploited due to the absence of water in the soil, what hinders the use of vapour turbines. This work presents the development of the first facility of geothermal thermoelectric generators operating in the world. This novel generators are producing 400 W of power in Timanfaya National Park. It has three geothermal thermoelectric generators, each with 4 thermosyphons per borehole and 40 thermoelectric modules that directly transform heat into electricity. This facility, with the advantages of geothermal energy such as continuity and independence on the weather, requires low maintenance because it does not require moving parts nor water consumption. That makes feasible for the first time to harness the geothermal potential in Lanzarote, producing an electric energy of 9.4 kWh per day, which means 3.42 MWh per year. The field installation of this novel technology has enabled to accurately calculate the Levelized Cost of Energy, which is 0.22 €/kWh. Although a 29% decrease in the power generated by thermoelectric module was detected when installing a GTEG with 40 modules with respect to a GTEG with 10 modules, this decrease is compensated by the fact that by installing more modules, the electrical production per borehole is optimized, reducing the LCOE. The developed facility will avoid the emission of 2.3 tons of CO2 and is totally respectful with the environment if compared to conventional geothermal power plants.
  • PublicationOpen Access
    Thermoelectric generator with passive biphasic thermosyphon heat exchanger for waste heat recovery: design and experimentation
    (MDPI, 2021) Araiz Vega, Miguel; Casi Satrústegui, Álvaro; Catalán Ros, Leyre; Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua
    One of the measures to fight against the current energy situation and reduce the energy consumption at an industrial process is to recover waste heat and transform it into electric power. Thermoelectric generators can be used for that purpose but there is a lack of experimental studies that can bring this technology closer to reality. This work presents the design, optimizations and development of two devices that are experimented and compared under the same working conditions. The hot side heat exchanger of both generators has been designed using a computational fluid dynamics software and for the cold side of the generators two technologies have been analysed: a finned dissipater that uses a fan and free convection biphasic thermosyphon. The results obtained show a maximum net generation of 6.9 W in the thermoelectric generator with the finned dissipater; and 10.6 W of power output in the generator with the biphasic thermosyphon. These results remark the importance of a proper design of the heat exchangers, trying to get low thermal resistances at both sides of the thermoelectric modules, as well as, the necessity of considering the auxiliary consumption of the equipment employed.
  • PublicationOpen Access
    Gamification and a low-cost laboratory equipment aimed to boost vapor compresion refrigeration learning
    (OmniaScience, 2022) Aranguren Garacochea, Patricia; Sánchez, Daniel; Casi Satrústegui, Álvaro; Araiz Vega, Miguel; Catalán Ros, Leyre; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The nowadays European educational framework boosts applying the learned theoretical concepts to real situations. Hence, practice sessions are key resources to present students direct applications of the theoretical concepts shown in class. Thus, developing new educational equipment and practice sessions oriented to bringing theoretical knowledge closer to practice should be one of the objectives of teachers. The present work describes a solution proposed by lectures of two Spanish universities looking to increase the knowledge of their engineering students. Along the years, these docents have noticed the lack of connection between the theoretical and practical knowledge among their students, drastically harming their learning procedure. Thus, in order to deepen into practical learning, a teaching methodology involving low-cost prototypes of vapor compression systems and a gamification method to help the students understand the concepts is proposed. The proposed methodology is expected to make a big positive impact on the results obtained by the students, taking into account the preliminary results reached.
  • PublicationOpen Access
    Simulation of thermoelectric heat pumps in nearly zero energy buildings: why do all models seem to be right?
    (Elsevier, 2021) Martínez Echeverri, Álvaro; Díaz de Garayo, Sergio; Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Catalán Ros, Leyre; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC
    The use of thermoelectric heat pumps for heat, ventilation, and air conditioning in nearly-zero-energy buildings is one of the most promising applications of thermoelectrics. However, simulation works in the literature are predominately based on the simple model, which was proven to exhibit significant deviations from experimental results. Nine modelling techniques have been compared in this work, according to statistical methods based on uncertainty analysis, in terms of predicted coefficient of performance and cooling power. These techniques come from the combination of three simulation models for thermoelectric modules (simple model, improved model, electric analogy) and five methods for implementing the thermoelectric properties. The main conclusion is that there is no statistical difference in the mean values of coefficient of performance and cooling power provided by these modelling techniques under all the scenarios, at 95% level of confidence. However, differences appear in the precision of these results in terms of uncertainty of the confidence intervals. Minimum values of uncertainty are obtained when the thermal resistance ratio approaches 0.1, being ±8% when using temperature-dependent expressions for the thermoelectric properties, ±18% when using Lineykin's method, and ± 25% when using Chen's method. The best combination is that composed of the simple model and temperature-dependent expressions for the thermoelectric properties. Additionally, if low values of resistance ratio are anticipated, empirical expressions from the literature can be used for the thermal resistance of the heat exchangers; for high values, though, experimental tests should be deployed, especially for the heat exchanger on the hot side.
  • PublicationOpen Access
    Enhanced behaviour of a passive thermoelectric generator with phase change heat exchangers and radiative cooling
    (Elsevier, 2023) Astrain Ulibarrena, David; Jaramillo-Fernández, Juliana; Araiz Vega, Miguel; Francone, Achille; Catalán Ros, Leyre; Jacobo-Martín, Alejandra; Alegría Cía, Patricia; Sotomayor-Torres, Clivia M.; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Heat exchangers are essential to optimize the efficiency of Thermoelectric Generators (TEGs), and heat pipes without fans have proven to be an advantageous design as it maintains the characteristic robustness of thermoelectricity, low maintenance and lack of moving parts. However, the efficiency of these heat exchangers decreases under natural convection conditions, reducing their heat transfer capacity and thus thermoelectric power production. This work reports on a novel heat exchanger that combines for the first time, phase change and radiative cooling in a thermoelectric generator to improve its efficiency and increase the production of electrical energy, specially under natural convection. For this, two thermoelectric generators with heat-pipes on their cold sides have been tested: one with the radiative coating and the other without it. Their thermal resistances have been determined and the electric power output was compared under different working conditions, namely, natural convection and forced convection indoors and outdoors. The experimental tests show a clear reduction of the heat exchanger thermal resistance thanks to the radiative coating and consequently, an increase of electric production 8.3 % with outdoor wind velocities of 1 m/s, and up to 54.8 % under free convection conditions. The application of the radiative surface treatment is shown to result in a more stable electrical energy production, suppressing the drastic decrease in the generated electric power that occurs in thermoelectric generators when they work under free convection.
  • PublicationOpen Access
    Prospects of autonomous volcanic monitoring stations: experimental investigation on thermoelectric generation from fumaroles
    (MDPI, 2020) Catalán Ros, Leyre; Araiz Vega, Miguel; Padilla, Germán D.; Hernández, Pedro A.; Pérez, Nemesio M.; García de la Noceda, Celestino; Albert, José F.; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería
    Fumaroles represent evidence of volcanic activity, emitting steam and volcanic gases at temperatures between 70 and 100 °C. Due to the well-known advantages of thermoelectricity, such as reliability, reduced maintenance and scalability, the present paper studies the possibilities of thermoelectric generators, devices based on solid-state physics, to directly convert fumaroles heat into electricity due to the Seebeck effect. For this purpose, a thermoelectric generator composed of two bismuth-telluride thermoelectric modules and heat pipes as heat exchangers was installed, for the first time, at Teide volcano (Canary Islands, Spain), where fumaroles arise in the surface at 82 °C. The installed thermoelectric generator has demonstrated the feasibility of the proposed solution, leading to a compact generator with no moving parts that produces a net generation between 0.32 and 0.33 W per module given a temperature difference between the heat reservoirs encompassed in the 69–86 °C range. These results become interesting due to the possibilities of supplying power to the volcanic monitoring stations that measure the precursors of volcanic eruptions, making them completely autonomous. Nonetheless, in order to achieve this objective, corrosion prevention measures must be taken because the hydrogen sulfide contained in the fumaroles reacts with steam, forming sulfuric acid.