Person:
González Vian, José

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

González Vian

First Name

José

person.page.departamento

Ingeniería Mecánica, Energética y de Materiales

person.page.instituteName

ORCID

person.page.upna

29

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Computational study on the thermal influence of the components of a thermoelectric ice maker on the ice production
    (Springer US, 2012) Rodríguez García, Antonio; Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; González Vian, José; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    The main objective of this paper is to study the thermal resistances of two components of a thermoelectric ice maker installed in a no-frost refrigerator, in order to optimize the ice production. This study is conducted via a computational model developed by the Thermal and Fluids Research Group from Public University of Navarre, explained and validated in previous papers. Firstly, three dissipaters with different space between fins are simulated using Computational Fluid Dynamics Fluent to study their influence on both the ice production and the performance of the refrigerator. The computational model predicts a maximum production of 2.82 kg/day of ice with less than 7 W of extra electric power consumption, though these values depend to a great extent on the cooling and freezing power of the refrigerator. Secondly, this work focuses on reducing the size of the components in order to save raw material and reduce the cost of the device. The computational model predicts that the last design produces 2.42 kg/day of ice, saves 65 % of raw material and reduces to the half the expenses assigned to the thermoelectric modules.
  • PublicationOpen Access
    Development and experimental validation of a computational model in order to simulate ice cube production in a thermoelectric ice maker
    (Elsevier, 2009) Rodríguez García, Antonio; González Vian, José; Astrain Ulibarrena, David; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    We have developed a computational model which allows the simulation of a thermoelectric device to make ice cubes in a vapor compression domestic fridge. This model solves both the thermoelectric and heat transfer equations, including the phase change equations in the ice cube production. The inputs of the model are: the thermoelectric parameters as a function of the temperature; dimensions; material properties (thermal resistances and capacities) and the boundary conditions (room temperature and voltage supplied to the Peltier module). The outputs are the values of the temperature for all the elements of the thermoelectric ice-maker and the ice production. In the experimental phase a prototype of a thermoelectric ice maker incorporated in a vapour compression domestic fridge was constructed in order to adjust and validate the computational model, and to optimize the experimental application. This ice-maker has two Peltier modules, some aluminum cylinders, called fingers, where the ice is made, and a component that acts as heat extender and dissipater which connects the hot side of Peltier module with the freezer compartment. The ice formation on the fingers is obtained by the cooling on the Peltier modules. When the ice cubes are formed, the voltage polarity of the thermoelectric modules is switched so the fingers warm up until the ice around the fingers melts. Then the ice cubes are dropped by gravity. This paper studies the production of ice cubes using the computational model and the experiment results and analyzes the most important parameters for the optimisation of the ice-maker (voltage supplied to the Peltier module, thermal resistance of the hot side dissipater and initial water temperature).
  • PublicationOpen Access
    Study of thermoelectric systems applied to electric power generation
    (Elsevier, 2009) Rodríguez García, Antonio; González Vian, José; Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    A computational model has been developed in order to simulate the thermal and electric behaviour of the thermoelectric generators. This model solves the non linear system of equations of the thermoelectric and heat transfer equations. The inputs of the program are the thermoelectric parameters as a function of the temperature and the boundary conditions, (room temperature and residual heat flux). The outputs are the temperature values of all the elements forming the thermoelectric generator, (performance, electric power, voltage and electric current generated). The model solves the equation system using the finite difference method and semi-empiric expressions for the convection coefficients. It has been built a thermoelectric electric power generation test bench in order to validate and determine the accuracy of the computational model, which maximum error is lower than 5%. The objective of this study is to create a design tool that allows us to solve the system of equations involved in the electric generation process without needing to impose boundary conditions that are not known in the design phase, as the temperature of the Peltier modules. With the computational model we study the influence of the heat flux supplied as well as the room temperature in the electric power generated.