Person:
González Vian, José

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

González Vian

First Name

José

person.page.departamento

Ingeniería Mecánica, Energética y de Materiales

person.page.instituteName

ORCID

person.page.upna

29

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Computational study on the thermal influence of the components of a thermoelectric ice maker on the ice production
    (Springer US, 2012) Rodríguez García, Antonio; Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; González Vian, José; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    The main objective of this paper is to study the thermal resistances of two components of a thermoelectric ice maker installed in a no-frost refrigerator, in order to optimize the ice production. This study is conducted via a computational model developed by the Thermal and Fluids Research Group from Public University of Navarre, explained and validated in previous papers. Firstly, three dissipaters with different space between fins are simulated using Computational Fluid Dynamics Fluent to study their influence on both the ice production and the performance of the refrigerator. The computational model predicts a maximum production of 2.82 kg/day of ice with less than 7 W of extra electric power consumption, though these values depend to a great extent on the cooling and freezing power of the refrigerator. Secondly, this work focuses on reducing the size of the components in order to save raw material and reduce the cost of the device. The computational model predicts that the last design produces 2.42 kg/day of ice, saves 65 % of raw material and reduces to the half the expenses assigned to the thermoelectric modules.
  • PublicationOpen Access
    Study of thermoelectric systems applied to electric power generation
    (Elsevier, 2009) Rodríguez García, Antonio; González Vian, José; Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    A computational model has been developed in order to simulate the thermal and electric behaviour of the thermoelectric generators. This model solves the non linear system of equations of the thermoelectric and heat transfer equations. The inputs of the program are the thermoelectric parameters as a function of the temperature and the boundary conditions, (room temperature and residual heat flux). The outputs are the temperature values of all the elements forming the thermoelectric generator, (performance, electric power, voltage and electric current generated). The model solves the equation system using the finite difference method and semi-empiric expressions for the convection coefficients. It has been built a thermoelectric electric power generation test bench in order to validate and determine the accuracy of the computational model, which maximum error is lower than 5%. The objective of this study is to create a design tool that allows us to solve the system of equations involved in the electric generation process without needing to impose boundary conditions that are not known in the design phase, as the temperature of the Peltier modules. With the computational model we study the influence of the heat flux supplied as well as the room temperature in the electric power generated.