Person: López Molina, Carlos
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
López Molina
First Name
Carlos
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ORCID
0000-0002-0904-9834
person.page.upna
810097
Name
26 results
Search Results
Now showing 1 - 10 of 26
Publication Open Access Applications of sensing for disease detection(Springer, 2021) Castro, Ana Isabel de; Pérez Roncal, Claudia; Thomasson, J. Alex; Ehsani, Reza; López Maestresalas, Ainara; Yang, Chenghai; Jarén Ceballos, Carmen; Wang, Tianyi; Cribben, Curtis; Marín Ederra, Diana; Isakeit, Thomas; Urrestarazu Vidart, Jorge; López Molina, Carlos; Wang, Xiwei; Nichols, Robert L.; Santesteban García, Gonzaga; Arazuri Garín, Silvia; Peña, José Manuel; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ingeniería; Ingeniaritza; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe potential loss of world crop production from the effect of pests, including weeds, animal pests, pathogens and viruses has been quantifed as around 40%. In addition to the economic threat, plant diseases could have disastrous consequences for the environment. Accurate and timely disease detection requires the use of rapid and reliable techniques capable of identifying infected plants and providing the tools required to implement precision agriculture strategies. The combination of suitable remote sensing (RS) data and advanced analysis algorithms makes it possible to develop prescription maps for precision disease control. This chapter shows some case studies on the use of remote sensing technology in some of the world’s major crops; namely cotton, avocado and grapevines. In these case studies, RS has been applied to detect disease caused by fungi using different acquisition platforms at different scales, such as leaf-level hyperspectral data and canopy-level remote imagery taken from satellites, manned airplanes or helicopter, and UAVs. The results proved that remote sensing is useful, effcient and effective for identifying cotton root rot zones in cotton felds, laurel wilt-infested avocado trees and escaaffected vines, which would allow farmers to optimize inputs and feld operations, resulting in reduced yield losses and increased profts.Publication Open Access A survey of fingerprint classification Part II: experimental analysis and ensemble proposal(Elsevier, 2015) Galar Idoate, Mikel; Derrac, Joaquín; Peralta, Daniel; Triguero, Isaac; Paternain Dallo, Daniel; López Molina, Carlos; García, Salvador; Benítez, José Manuel; Pagola Barrio, Miguel; Barrenechea Tartas, Edurne; Bustince Sola, Humberto; Herrera, Francisco; Automática y Computación; Automatika eta KonputazioaIn the first part of this paper we reviewed the fingerprint classification literature from two different perspectives: the feature extraction and the classifier learning. Aiming at answering the question of which among the reviewed methods would perform better in a real implementation we end up in a discussion which showed the difficulty in answering this question. No previous comparison exists in the literature and comparisons among papers are done with different experimental frameworks. Moreover, the difficulty in implementing published methods was stated due to the lack of details in their description, parameters and the fact that no source code is shared. For this reason, in this paper we will go through a deep experimental study following the proposed double perspective. In order to do so, we have carefully implemented some of the most relevant feature extraction methods according to the explanations found in the corresponding papers and we have tested their performance with different classifiers, including those specific proposals made by the authors. Our aim is to develop an objective experimental study in a common framework, which has not been done before and which can serve as a baseline for future works on the topic. This way, we will not only test their quality, but their reusability by other researchers and will be able to indicate which proposals could be considered for future developments. Furthermore, we will show that combining different feature extraction models in an ensemble can lead to a superior performance, significantly increasing the results obtained by individual models.Publication Open Access Image feature extraction using OD-monotone functions(Springer, 2018) Marco Detchart, Cedric; López Molina, Carlos; Fernández Fernández, Francisco Javier; Pagola Barrio, Miguel; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasEdge detection is a basic technique used as a preliminary step for, e.g., object extraction and recognition in image processing. Many of the methods for edge detection can be fit in the breakdown structure by Bezdek, in which one of the key parts is feature extraction. This work presents a method to extract edge features from a grayscale image using the so-called ordered directionally monotone functions. For this purpose we introduce some concepts about directional monotonicity and present two construction methods for feature extraction operators. The proposed technique is competitive with the existing methods in the literature. Furthermore, if we combine the features obtained by different methods using penalty functions, the results are equal or better results than stateof-the-art methods.Publication Open Access A framework for radial data comparison and its application to fingerprint analysis(Elsevier, 2016) Marco Detchart, Cedric; Cerrón González, Juan; Miguel Turullols, Laura de; López Molina, Carlos; Bustince Sola, Humberto; Galar Idoate, Mikel; Automatika eta Konputazioa; Institute of Smart Cities - ISC; Automática y Computación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThis work tackles the comparison of radial data, and proposes comparison measures that are further applied to fingerprint analysis. First, we study the similarity of scalar and non-scalar radial data, elaborated on previous works in fuzzy set theory. This study leads to the concepts of restricted radial equivalence function and Radial Similarity Measure, which model the perceived similarity between scalar and vectorial pieces of radial data, respectively. Second, the utility of these functions is tested in the context of fingerprint analysis, and more specifically, in the singular point detection. With this aim, a novel Template-based Singular Point Detection method is proposed, which takes advantage of these functions. Finally, their suitability is tested in different fingerprint databases. Different Similarity Measures are considered to show the flexibility offered by these measures and the behaviour of the new method is compared with well-known singular point detection methods.Publication Open Access Evaluation of near-infrared hyperspectral imaging for the assessment of potato processing aptitude(Frontiers Media, 2022) López Maestresalas, Ainara; López Molina, Carlos; Oliva Lobo, Gil Alfonso; Jarén Ceballos, Carmen; Ruiz de Galarreta, José Ignacio; Peraza Alemán, Carlos Miguel; Arazuri Garín, Silvia; Ingeniaritza; Estatistika, Informatika eta Matematika; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ingeniería; Estadística, Informática y MatemáticasThe potato (Solanum tuberosum L.) is the world's fifth most important staple food with high socioeconomic relevance. Several potato cultivars obtained by selection and crossbreeding are currently on the market. This diversity causes tubers to exhibit different behaviors depending on the processing to which they are subjected. Therefore, it is interesting to identify cultivars with specific characteristics that best suit consumer preferences. In this work, we present a method to classify potatoes according to their cooking or frying as crisps aptitude using NIR hyperspectral imaging (HIS) combined with a Partial Least Squares Discriminant Analysis (PLS-DA). Two classification approaches were used in this study. First, a classification model using the mean spectra of a dataset composed of 80 tubers belonging to 10 different cultivars. Then, a pixel-wise classification using all the pixels of each sample of a small subset of samples comprised of 30 tubers. Hyperspectral images were acquired using fresh-cut potato slices as sample material placed on a mobile platform of a hyperspectral system in the NIR range from 900 to 1,700 nm. After image processing, PLS-DA models were built using different pre-processing combinations. Excellent accuracy rates were obtained for the models developed using the mean spectra of all samples with 90% of tubers correctly classified in the external dataset. Pixel-wise classification models achieved lower accuracy rates between 66.62 and 71.97% in the external validation datasets. Moreover, a forward interval PLS (iPLS) method was used to build pixel-wise PLS-DA models reaching accuracies above 80 and 71% in cross-validation and external validation datasets, respectively. Best classification result was obtained using a subset of 100 wavelengths (20 intervals) with 71.86% of pixels correctly classified in the validation dataset. Classification maps were generated showing that false negative pixels were mainly located at the edges of the fresh-cut slices while false positive were principally distributed at the central pith, which has singular characteristics.Publication Open Access Twofold binary image consensus for medical imaging meta-analysis(Springer, 2018) López Molina, Carlos; Sánchez Ruiz de Gordoa, Javier; Zelaya Huerta, María Victoria; Baets, Bernard de; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaIn the field of medical imaging, ground truth is often gathered from groups of experts, whose outputs are generally heterogeneous. This procedure raises questions on how to compare the results obtained by automatic algorithms to multiple ground truth items. Secondarily, it raises questions on the meaning of the divergences between experts. In this work, we focus on the case of immunohistochemistry image segmentation and analysis. We propose measures to quantify the divergence in groups of ground truth images, and we observe their behaviour. These measures are based upon fusion techniques for binary images, which is a common example of non-monotone data fusion process. Our measures can be used not only in this specific field of medical imagery, but also in any task related to meta-quality evaluation for image processing, e.g. ground truth validation or expert rating.Publication Open Access Fuzzy integrals for edge detection(Springer, 2023) Marco Detchart, Cedric; Lucca, Giancarlo; Pereira Dimuro, Graçaliz; Da Cruz Asmus, Tiago; López Molina, Carlos; Borges, Eduardo N.; Rincon, J. A.; Julian, Vicente; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaIn this work, we compare different families of fuzzy integrals in the context of feature aggregation for edge detection. We analyze the behaviour of the Sugeno and Choquet integral and some of its generalizations. In addition, we study the influence of the fuzzy measure over the extracted image features. For testing purposes, we follow the Bezdek Breakdown Structure for edge detection and compare the different fuzzy integrals with some classical feature aggregation methods in the literature. The results of these experiments are analyzed and discussed in detail, providing insights into the strengths and weaknesses of each approach. The overall conclusion is that the configuration of the fuzzy measure does have a paramount effect on the results by the Sugeno integral, but also that satisfactory results can be obtained by sensibly tuning such parameter. The obtained results provide valuable guidance in choosing the appropriate family of fuzzy integrals and settings for specific applications. Overall, the proposed method shows promising results for edge detection and could be applied to other image-processing tasks.Publication Open Access Hyperspectral imaging using notions from type-2 fuzzy sets(Springer, 2019) López Maestresalas, Ainara; Miguel Turullols, Laura de; López Molina, Carlos; Arazuri Garín, Silvia; Bustince Sola, Humberto; Jarén Ceballos, Carmen; Ingeniería; Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaFuzzy set theory has developed a prolific armamentarium of mathematical tools for each of the topics that has fallen within its scope. One of such topics is data comparison, for which a range of operators has been presented in the past. These operators can be used within the fuzzy set theory, but can also be ported to other scenarios in which data are provided in various representations. In this work, we elaborate on notions for type-2 fuzzy sets, specifically for the comparison of type-2 fuzzy membership degrees, to create function comparison operators. We further apply these operators to hyperspectral imaging, in which pixelwise data are provided as functions over a certain energy spectra. The performance of the functional comparison operators is put to the test in the context of in-laboratory hyperspectral image segmentation.Publication Open Access Reduction of complexity using generators of pseudo-overlap and pseudo-grouping functions(2024) Ferrero Jaurrieta, Mikel; Paiva, Rui; Cruz, Anderson; Bedregal, Benjamín; Zhang, Xiaohong; Takac, Zdenko; López Molina, Carlos; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaOverlap and grouping functions can be used to measure events in which we must consider either the maximum or the minimum lack of knowledge. The commutativity of overlap and grouping functions can be dropped out to introduce the notions of pseudo-overlap and pseudo-grouping functions, respectively. These functions can be applied in problems where distinct orders of their arguments yield different values, i.e., in non-symmetric contexts. Intending to reduce the complexity of pseudo-overlap and pseudo-grouping functions, we propose new construction methods for these functions from generalized concepts of additive and multiplicative generators. We investigate the isomorphism between these families of functions. Finally, we apply these functions in an illustrative problem using them in a time series prediction combined model using the IOWA operator to evidence that using these generators and functions implies better performance.Publication Embargo Non-symmetric over-time pooling using pseudo-grouping functions for convolutional neural networks(Elsevier, 2024) Ferrero Jaurrieta, Mikel; Paiva, Rui; Cruz, Anderson; Callejas Bedregal, Benjamin; Miguel Turullols, Laura de; Takáč, Zdenko; López Molina, Carlos; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCConvolutional Neural Networks (CNNs) are a family of networks that have become state-of-the-art in several fields of artificial intelligence due to their ability to extract spatial features. In the context of natural language processing, they can be used to build text classification models based on textual features between words. These networks fuse local features to generate global features in their over-time pooling layers. These layers have been traditionally built using the maximum function or other symmetric functions such as the arithmetic mean. It is important to note that the order of input local features is significant (i.e. the symmetry is not an inherent characteristic of the model). While this characteristic is appropriate for image-oriented CNNs, where symmetry might make the network robust to image rigid transformations, it seems counter-productive for text processing, where the order of the words is certainly important. Our proposal is, hence, to use non-symmetric pooling operators to replace the maximum or average functions. Specifically, we propose to perform over-time pooling using pseudo-grouping functions, a family of non-symmetric aggregation operators that generalize the maximum function. We present a construction method for pseudo-grouping functions and apply different examples of this family to over-time pooling layers in text-oriented CNNs. Our proposal is tested on seven different models and six different datasets in the context of engineering applications, e.g. text classification. The results show an overall improvement of the models when using non-symmetric pseudo-grouping functions over the traditional pooling function.
- «
- 1 (current)
- 2
- 3
- »