Person:
López Molina, Carlos

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

López Molina

First Name

Carlos

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

ORCID

0000-0002-0904-9834

person.page.upna

810097

Name

Search Results

Now showing 1 - 10 of 16
  • PublicationOpen Access
    A framework for active contour initialization with application to liver segmentation in MRI
    (Springer, 2022) Mir Torres, Arnau; Antunes dos Santos, Felipe; Fernández Fernández, Francisco Javier; López Molina, Carlos; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Object segmentation is a prominent low-level task in image processing and computer vision. A technique of special relevance within segmentation algorithms is active contour modeling. An active contour is a closed contour on an image which can be evolved to progressively fit the silhouette of certain area or object. Active contours shall be initialized as a closed contour at some position of the image, further evolving to precisely fit to the silhouette of the object of interest. While the evolution of the contour has been deeply studied in literature [5, 11], the study of strategies to define the initial location of the contour is rather absent from it. Typically, such contour is created as a small closed curve around an inner position in the object. However, literature contains no general-purpose algorithms to determine those inner positions, or to quantify their fitness. In fact, such points are frequently set manually by human experts, hence turning the segmentation process into a semi-supervised one. In this work, we present a method to find inner points in relevant object using spatial-tonal fuzzy clustering. Our proposal intends to detect dominant clusters of bright pixels, which are further used to identify candidate points or regions around which active contours can be initialized.
  • PublicationOpen Access
    Operador de comparación de elementos multivaluados basado en funciones de equivalencia restringida
    (Universidad de Málaga, 2021) Castillo López, Aitor; López Molina, Carlos; Fernández Fernández, Francisco Javier; Sesma Sara, Mikel; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    En este trabajo proponemos un nuevo enfoque del algoritmo de clustering gravitacional basado en lo que Einstein considero su 'mayor error': la constante cosmológica. De manera similar al algoritmo de clustering gravitacional, nuestro enfoque está inspirado en principios y leyes del cosmos, y al igual que ocurre con la teoría de la relatividad de Einstein y la teoría de la gravedad de Newton, nuestro enfoque puede considerarse una generalización del agrupamiento gravitacional, donde, el algoritmo de clustering gravitacional se recupera como caso límite. Además, se desarrollan e implementan algunas mejoras que tienen como objetivo optimizar la cantidad de iteraciones finales, y de esta forma, se reduce el tiempo de ejecución tanto para el algoritmo original como para nuestra versión.
  • PublicationEmbargo
    Non-symmetric over-time pooling using pseudo-grouping functions for convolutional neural networks
    (Elsevier, 2024) Ferrero Jaurrieta, Mikel; Paiva, Rui; Cruz, Anderson; Callejas Bedregal, Benjamin; Miguel Turullols, Laura de; Takáč, Zdenko; López Molina, Carlos; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    Convolutional Neural Networks (CNNs) are a family of networks that have become state-of-the-art in several fields of artificial intelligence due to their ability to extract spatial features. In the context of natural language processing, they can be used to build text classification models based on textual features between words. These networks fuse local features to generate global features in their over-time pooling layers. These layers have been traditionally built using the maximum function or other symmetric functions such as the arithmetic mean. It is important to note that the order of input local features is significant (i.e. the symmetry is not an inherent characteristic of the model). While this characteristic is appropriate for image-oriented CNNs, where symmetry might make the network robust to image rigid transformations, it seems counter-productive for text processing, where the order of the words is certainly important. Our proposal is, hence, to use non-symmetric pooling operators to replace the maximum or average functions. Specifically, we propose to perform over-time pooling using pseudo-grouping functions, a family of non-symmetric aggregation operators that generalize the maximum function. We present a construction method for pseudo-grouping functions and apply different examples of this family to over-time pooling layers in text-oriented CNNs. Our proposal is tested on seven different models and six different datasets in the context of engineering applications, e.g. text classification. The results show an overall improvement of the models when using non-symmetric pseudo-grouping functions over the traditional pooling function.
  • PublicationOpen Access
    Neuro-inspired edge feature fusion using Choquet integrals
    (Elsevier, 2021) Marco Detchart, Cedric; Lucca, Giancarlo; López Molina, Carlos; Miguel Turullols, Laura de; Pereira Dimuro, Graçaliz; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    It is known that the human visual system performs a hierarchical information process in which early vision cues (or primitives) are fused in the visual cortex to compose complex shapes and descriptors. While different aspects of the process have been extensively studied, such as lens adaptation or feature detection, some other aspects, such as feature fusion, have been mostly left aside. In this work, we elaborate on the fusion of early vision primitives using generalizations of the Choquet integral, and novel aggregation operators that have been extensively studied in recent years. We propose to use generalizations of the Choquet integral to sensibly fuse elementary edge cues, in an attempt to model the behaviour of neurons in the early visual cortex. Our proposal leads to a fully-framed edge detection algorithm whose performance is put to the test in state-of-the-art edge detection datasets.
  • PublicationOpen Access
    Exploring the potential of hyperspectral imaging to detect Esca disease complex in asymptomatic grapevine leaves
    (Elsevier, 2022) Pérez Roncal, Claudia; Arazuri Garín, Silvia; López Molina, Carlos; Jarén Ceballos, Carmen; Santesteban García, Gonzaga; López Maestresalas, Ainara; Ingeniaritza; Estatistika, Informatika eta Matematika; Agronomia, Bioteknologia eta Elikadura; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ingeniería; Estadística, Informática y Matemáticas; Agronomía, Biotecnología y Alimentación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Precise and reliable identification of specific plant diseases is a challenge within precision agriculture nowadays. This is the case of esca, a complex grapevine trunk disease, that represents a major threat to modern viticulture as it is responsible for large economic losses annually. The lack of effective control strategies and the complexity of esca disease expression make essential the identification of affected plants, before symptoms become evident, for a better management of the vineyard. This study evaluated the suitability of a near-infrared hyperspectral imaging (HSI) system to detect esca disease in asymptomatic grapevine leaves of Tempranillo red-berried cultivar. For this, 72 leaves from an experimental vineyard, naturally infected with esca, were collected and scanned with a lab-scale HSI system in the 900-1700 nm spectral range. Then, effective image processing and multivariate analysis techniques were merged to develop pixel-based classification models for the distinction of healthy, asymptomatic and symptomatic leaves. Automatic and interval partial least squares variable selection methods were tested to identify the most relevant wavelengths for the detection of esca-affected vines using partial least squares discriminant analysis and different pre-processing techniques. Three-class and two-class classifiers were carried out to differentiate healthy, asymptomatic and symptomatic leaf pixels, and healthy from asymptomatic pixels, respectively. Both variable selection methods performed similarly, achieving good classification rates in the range of 82.77-97.17% in validation datasets for either three-class or two-class classifiers. The latter results demonstrated the capability of hyperspectral imaging to distinguish two groups of seemingly identical leaves (healthy and asymptomatic). These findings would ease the annual monitoring of disease incidence in the vineyard and, therefore, better crop management and decision making.
  • PublicationOpen Access
    Hyperspectral system trade-offs for illumination, hardware and analysis methods: a case study of seed mix ingredient discrimination
    (IM Publications, 2020) Blanch Pérez del Notario, Carolina; López Molina, Carlos; Lambrechts, Andy; Saeys, Wouter; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    The discrimination power of a hyperspectral imaging system for image segmentation or object detection is determined by the illumination, the camera spatial–spectral resolution, and both the pre-processing and analysis methods used for image processing. In this study, we methodically reviewed the alternatives for each of those factors for a case study from the food industry to provide guidance in the construction and configuration of hyperspectral imaging systems in the visible near infrared range for food quality inspection. We investigated both halogen-and LED-based illuminations and considered cameras with different spatial–spectral resolution trade-offs. At the level of the data analysis, we evaluated the impact of binning, median filtering and bilateral filtering as pre-or post-processing and compared pixel-based classifiers with convolutional neural networks for a challenging application in the food industry, namely ingredient identification in a flour–seed mix. Starting from a basic configuration and by modifying the combination of system aspects we were able to increase the mean accuracy by at least 25%. In addition, different trade-offs in performance-complexity were identified for different combinations of system parameters, allowing adaptation to diverse application requirements.
  • PublicationOpen Access
    Evaluation of near-infrared hyperspectral imaging for the assessment of potato processing aptitude
    (Frontiers Media, 2022) López Maestresalas, Ainara; López Molina, Carlos; Oliva Lobo, Gil Alfonso; Jarén Ceballos, Carmen; Ruiz de Galarreta, José Ignacio; Peraza Alemán, Carlos Miguel; Arazuri Garín, Silvia; Ingeniaritza; Estatistika, Informatika eta Matematika; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ingeniería; Estadística, Informática y Matemáticas
    The potato (Solanum tuberosum L.) is the world's fifth most important staple food with high socioeconomic relevance. Several potato cultivars obtained by selection and crossbreeding are currently on the market. This diversity causes tubers to exhibit different behaviors depending on the processing to which they are subjected. Therefore, it is interesting to identify cultivars with specific characteristics that best suit consumer preferences. In this work, we present a method to classify potatoes according to their cooking or frying as crisps aptitude using NIR hyperspectral imaging (HIS) combined with a Partial Least Squares Discriminant Analysis (PLS-DA). Two classification approaches were used in this study. First, a classification model using the mean spectra of a dataset composed of 80 tubers belonging to 10 different cultivars. Then, a pixel-wise classification using all the pixels of each sample of a small subset of samples comprised of 30 tubers. Hyperspectral images were acquired using fresh-cut potato slices as sample material placed on a mobile platform of a hyperspectral system in the NIR range from 900 to 1,700 nm. After image processing, PLS-DA models were built using different pre-processing combinations. Excellent accuracy rates were obtained for the models developed using the mean spectra of all samples with 90% of tubers correctly classified in the external dataset. Pixel-wise classification models achieved lower accuracy rates between 66.62 and 71.97% in the external validation datasets. Moreover, a forward interval PLS (iPLS) method was used to build pixel-wise PLS-DA models reaching accuracies above 80 and 71% in cross-validation and external validation datasets, respectively. Best classification result was obtained using a subset of 100 wavelengths (20 intervals) with 71.86% of pixels correctly classified in the validation dataset. Classification maps were generated showing that false negative pixels were mainly located at the edges of the fresh-cut slices while false positive were principally distributed at the central pith, which has singular characteristics.
  • PublicationOpen Access
    From restricted equivalence functions on Ln to similarity measures between fuzzy multisets
    (IEEE, 2023) Ferrero Jaurrieta, Mikel; Takáč, Zdenko; Rodríguez Martínez, Iosu; Marco Detchart, Cedric; Bernardini, Ángela; Fernández Fernández, Francisco Javier; López Molina, Carlos; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Restricted equivalence functions are well-known functions to compare two numbers in the interval between 0 and 1. Despite the numerous works studying the properties of restricted equivalence functions and their multiple applications as support for different similarity measures, an extension of these functions to an n-dimensional space is absent from the literature. In this paper, we present a novel contribution to the restricted equivalence function theory, allowing to compare multivalued elements. Specifically, we extend the notion of restricted equivalence functions from L to L n and present a new similarity construction on L n . Our proposal is tested in the context of color image anisotropic diffusion as an example of one of its many applications.
  • PublicationOpen Access
    Fuzzy integrals for edge detection
    (Springer, 2023) Marco Detchart, Cedric; Lucca, Giancarlo; Pereira Dimuro, Graçaliz; Da Cruz Asmus, Tiago; López Molina, Carlos; Borges, Eduardo N.; Rincon, J. A.; Julian, Vicente; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    In this work, we compare different families of fuzzy integrals in the context of feature aggregation for edge detection. We analyze the behaviour of the Sugeno and Choquet integral and some of its generalizations. In addition, we study the influence of the fuzzy measure over the extracted image features. For testing purposes, we follow the Bezdek Breakdown Structure for edge detection and compare the different fuzzy integrals with some classical feature aggregation methods in the literature. The results of these experiments are analyzed and discussed in detail, providing insights into the strengths and weaknesses of each approach. The overall conclusion is that the configuration of the fuzzy measure does have a paramount effect on the results by the Sugeno integral, but also that satisfactory results can be obtained by sensibly tuning such parameter. The obtained results provide valuable guidance in choosing the appropriate family of fuzzy integrals and settings for specific applications. Overall, the proposed method shows promising results for edge detection and could be applied to other image-processing tasks.
  • PublicationOpen Access
    Applications of sensing for disease detection
    (Springer, 2021) Castro, Ana Isabel de; Pérez Roncal, Claudia; Thomasson, J. Alex; Ehsani, Reza; López Maestresalas, Ainara; Yang, Chenghai; Jarén Ceballos, Carmen; Wang, Tianyi; Cribben, Curtis; Marín Ederra, Diana; Isakeit, Thomas; Urrestarazu Vidart, Jorge; López Molina, Carlos; Wang, Xiwei; Nichols, Robert L.; Santesteban García, Gonzaga; Arazuri Garín, Silvia; Peña, José Manuel; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ingeniería; Ingeniaritza; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The potential loss of world crop production from the effect of pests, including weeds, animal pests, pathogens and viruses has been quantifed as around 40%. In addition to the economic threat, plant diseases could have disastrous consequences for the environment. Accurate and timely disease detection requires the use of rapid and reliable techniques capable of identifying infected plants and providing the tools required to implement precision agriculture strategies. The combination of suitable remote sensing (RS) data and advanced analysis algorithms makes it possible to develop prescription maps for precision disease control. This chapter shows some case studies on the use of remote sensing technology in some of the world’s major crops; namely cotton, avocado and grapevines. In these case studies, RS has been applied to detect disease caused by fungi using different acquisition platforms at different scales, such as leaf-level hyperspectral data and canopy-level remote imagery taken from satellites, manned airplanes or helicopter, and UAVs. The results proved that remote sensing is useful, effcient and effective for identifying cotton root rot zones in cotton felds, laurel wilt-infested avocado trees and escaaffected vines, which would allow farmers to optimize inputs and feld operations, resulting in reduced yield losses and increased profts.