# Person: López Molina, Carlos

Loading...

## Email Address

## person.page.identifierURI

## Birth Date

## Research Projects

## Organizational Units

## Job Title

## Last Name

López Molina

## First Name

Carlos

## person.page.departamento

Estadística, Informática y Matemáticas

## person.page.instituteName

## ORCID

0000-0002-0904-9834

## person.page.upna

810097

## Name

28 results Back to results

### Filters

#### Author

#### Subject

#### Date

#### Has files

#### Item Type

### Settings

Sort By

Results per page

## Search Results

Now showing 1 - 10 of 28

Publication Open Access Reduction of complexity using generators of pseudo-overlap and pseudo-grouping functions(2024) Ferrero Jaurrieta, Mikel; Paiva, Rui; Cruz, Anderson; Callejas Bedregal, Benjamin; Zhang, Xiaohong; Takac, Zdenko; López Molina, Carlos; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaShow more Overlap and grouping functions can be used to measure events in which we must consider either the maximum or the minimum lack of knowledge. The commutativity of overlap and grouping functions can be dropped out to introduce the notions of pseudo-overlap and pseudo-grouping functions, respectively. These functions can be applied in problems where distinct orders of their arguments yield different values, i.e., in non-symmetric contexts. Intending to reduce the complexity of pseudo-overlap and pseudo-grouping functions, we propose new construction methods for these functions from generalized concepts of additive and multiplicative generators. We investigate the isomorphism between these families of functions. Finally, we apply these functions in an illustrative problem using them in a time series prediction combined model using the IOWA operator to evidence that using these generators and functions implies better performance.Show more Publication Embargo Non-symmetric over-time pooling using pseudo-grouping functions for convolutional neural networks(Elsevier, 2024) Ferrero Jaurrieta, Mikel; Paiva, Rui; Cruz, Anderson; Callejas Bedregal, Benjamin; Miguel Turullols, Laura de; Takáč, Zdenko; López Molina, Carlos; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCShow more Convolutional Neural Networks (CNNs) are a family of networks that have become state-of-the-art in several fields of artificial intelligence due to their ability to extract spatial features. In the context of natural language processing, they can be used to build text classification models based on textual features between words. These networks fuse local features to generate global features in their over-time pooling layers. These layers have been traditionally built using the maximum function or other symmetric functions such as the arithmetic mean. It is important to note that the order of input local features is significant (i.e. the symmetry is not an inherent characteristic of the model). While this characteristic is appropriate for image-oriented CNNs, where symmetry might make the network robust to image rigid transformations, it seems counter-productive for text processing, where the order of the words is certainly important. Our proposal is, hence, to use non-symmetric pooling operators to replace the maximum or average functions. Specifically, we propose to perform over-time pooling using pseudo-grouping functions, a family of non-symmetric aggregation operators that generalize the maximum function. We present a construction method for pseudo-grouping functions and apply different examples of this family to over-time pooling layers in text-oriented CNNs. Our proposal is tested on seven different models and six different datasets in the context of engineering applications, e.g. text classification. The results show an overall improvement of the models when using non-symmetric pseudo-grouping functions over the traditional pooling function.Show more Publication Open Access A framework for active contour initialization with application to liver segmentation in MRI(Springer, 2022) Mir Torres, Arnau; Antunes dos Santos, Felipe; Fernández Fernández, Francisco Javier; López Molina, Carlos; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaShow more Object segmentation is a prominent low-level task in image processing and computer vision. A technique of special relevance within segmentation algorithms is active contour modeling. An active contour is a closed contour on an image which can be evolved to progressively fit the silhouette of certain area or object. Active contours shall be initialized as a closed contour at some position of the image, further evolving to precisely fit to the silhouette of the object of interest. While the evolution of the contour has been deeply studied in literature [5, 11], the study of strategies to define the initial location of the contour is rather absent from it. Typically, such contour is created as a small closed curve around an inner position in the object. However, literature contains no general-purpose algorithms to determine those inner positions, or to quantify their fitness. In fact, such points are frequently set manually by human experts, hence turning the segmentation process into a semi-supervised one. In this work, we present a method to find inner points in relevant object using spatial-tonal fuzzy clustering. Our proposal intends to detect dominant clusters of bright pixels, which are further used to identify candidate points or regions around which active contours can be initialized.Show more Publication Open Access Hyperspectral imaging using notions from type-2 fuzzy sets(Springer, 2019) López Maestresalas, Ainara; Miguel Turullols, Laura de; López Molina, Carlos; Arazuri Garín, Silvia; Bustince Sola, Humberto; Jarén Ceballos, Carmen; Ingeniería; Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaShow more Fuzzy set theory has developed a prolific armamentarium of mathematical tools for each of the topics that has fallen within its scope. One of such topics is data comparison, for which a range of operators has been presented in the past. These operators can be used within the fuzzy set theory, but can also be ported to other scenarios in which data are provided in various representations. In this work, we elaborate on notions for type-2 fuzzy sets, specifically for the comparison of type-2 fuzzy membership degrees, to create function comparison operators. We further apply these operators to hyperspectral imaging, in which pixelwise data are provided as functions over a certain energy spectra. The performance of the functional comparison operators is put to the test in the context of in-laboratory hyperspectral image segmentation.Show more Publication Open Access Hyperspectral system trade-offs for illumination, hardware and analysis methods: a case study of seed mix ingredient discrimination(IM Publications, 2020) Blanch Pérez del Notario, Carolina; López Molina, Carlos; Lambrechts, Andy; Saeys, Wouter; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaShow more The discrimination power of a hyperspectral imaging system for image segmentation or object detection is determined by the illumination, the camera spatial–spectral resolution, and both the pre-processing and analysis methods used for image processing. In this study, we methodically reviewed the alternatives for each of those factors for a case study from the food industry to provide guidance in the construction and configuration of hyperspectral imaging systems in the visible near infrared range for food quality inspection. We investigated both halogen-and LED-based illuminations and considered cameras with different spatial–spectral resolution trade-offs. At the level of the data analysis, we evaluated the impact of binning, median filtering and bilateral filtering as pre-or post-processing and compared pixel-based classifiers with convolutional neural networks for a challenging application in the food industry, namely ingredient identification in a flour–seed mix. Starting from a basic configuration and by modifying the combination of system aspects we were able to increase the mean accuracy by at least 25%. In addition, different trade-offs in performance-complexity were identified for different combinations of system parameters, allowing adaptation to diverse application requirements.Show more Publication Open Access Multiscale edge detection using first-order derivative of anisotropic Gaussian kernels(Springer, 2019) Wang, Gang; López Molina, Carlos; Baets, Bernard de; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaShow more Spatially scaled edges are ubiquitous in natural images. To better detect edges with heterogeneous widths, in this paper, we propose a multiscale edge detection method based on first-order derivative of anisotropic Gaussian kernels. These kernels are normalized in scale-space, yielding a maximum response at the scale of the observed edge, and accordingly, the edge scale can be identified. Subsequently, the maximum response and the identified edge scale are used to compute the edge strength. Furthermore, we propose an adaptive anisotropy factor of which the value decreases as the kernel scale increases. This factor improves the noise robustness of small-scale kernels while alleviating the anisotropy stretch effect that occurs in conventional anisotropic methods. Finally, we evaluate our method on widely used datasets. Experimental results validate the benefits of our method over the competing methods.Show more Publication Open Access Operador de comparación de elementos multivaluados basado en funciones de equivalencia restringida(Universidad de Málaga, 2021) Castillo López, Aitor; López Molina, Carlos; Fernández Fernández, Francisco Javier; Sesma Sara, Mikel; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaShow more En este trabajo proponemos un nuevo enfoque del algoritmo de clustering gravitacional basado en lo que Einstein considero su 'mayor error': la constante cosmológica. De manera similar al algoritmo de clustering gravitacional, nuestro enfoque está inspirado en principios y leyes del cosmos, y al igual que ocurre con la teoría de la relatividad de Einstein y la teoría de la gravedad de Newton, nuestro enfoque puede considerarse una generalización del agrupamiento gravitacional, donde, el algoritmo de clustering gravitacional se recupera como caso límite. Además, se desarrollan e implementan algunas mejoras que tienen como objetivo optimizar la cantidad de iteraciones finales, y de esta forma, se reduce el tiempo de ejecución tanto para el algoritmo original como para nuestra versión.Show more Publication Open Access Extensions of fuzzy sets in image processing: an overview(EUSFLAT, 2011) Pagola Barrio, Miguel; Barrenechea Tartas, Edurne; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Galar Idoate, Mikel; Jurío Munárriz, Aránzazu; López Molina, Carlos; Paternain Dallo, Daniel; Sanz Delgado, José Antonio; Couto, P.; Melo Pinto, P.; Automática y Computación; Automatika eta KonputazioaShow more This work presents a valuable review for the interested reader of the recent Works using extensions of fuzzy sets in image processing. The chapter is divided as follows: first we recall the basics of the extensions of fuzzy sets, i.e. Type 2 fuzzy sets, interval-valued fuzzy sets and Atanassov’s intuitionistic fuzzy sets. In sequent sections we review the methods proposed for noise removal (sections 3), image enhancement (section 4), edge detection (section 5) and segmentation (section 6). There exist other image segmentation tasks such as video de-interlacing, stereo matching or object representation that are not described in this work.Show more Publication Open Access Ultrametrics for context-aware comparison of binary images(Elsevier, 2024) López Molina, Carlos; Iglesias Rey, Sara; Baets, Bernard de; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaShow more Quantitative image comparison has been a key topic in the image processing literature for the past 30 years. The reasons for it are diverse, and so is the range of applications in which measures of comparison are needed. Examples of image processing tasks requiring such measures are the evaluation of algorithmic results (through the comparison of computer-generated results to given ground truth) or the selection of loss/goal functions in a machine learning context. Measures of comparison in literature take different inspirations, and are often tailored to specific needs. Nevertheless, even if some measures of comparison intend to replicate how humans evaluate the similarity of two images, they normally overlook a fundamental characteristic of the way humans perform such evaluation: the context of comparison. In this paper, we present a measure of comparison for binary images that incorporates a sense of context. More specifically, we present a Methodology for the generation of ultrametrics for context-aware comparison of binary images. We test our proposal in the context of boundary image comparison on the BSDS500 benchmark.Show more Publication Open Access From restricted equivalence functions on Ln to similarity measures between fuzzy multisets(IEEE, 2023) Ferrero Jaurrieta, Mikel; Takáč, Zdenko; Rodríguez Martínez, Iosu; Marco Detchart, Cedric; Bernardini, Ángela; Fernández Fernández, Francisco Javier; López Molina, Carlos; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaShow more Restricted equivalence functions are well-known functions to compare two numbers in the interval between 0 and 1. Despite the numerous works studying the properties of restricted equivalence functions and their multiple applications as support for different similarity measures, an extension of these functions to an n-dimensional space is absent from the literature. In this paper, we present a novel contribution to the restricted equivalence function theory, allowing to compare multivalued elements. Specifically, we extend the notion of restricted equivalence functions from L to L n and present a new similarity construction on L n . Our proposal is tested in the context of color image anisotropic diffusion as an example of one of its many applications.Show more

- «
- 1 (current)
- 2
- 3
- »