Person:
López Molina, Carlos

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

López Molina

First Name

Carlos

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

ORCID

0000-0002-0904-9834

person.page.upna

810097

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Extensions of fuzzy sets in image processing: an overview
    (EUSFLAT, 2011) Pagola Barrio, Miguel; Barrenechea Tartas, Edurne; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Galar Idoate, Mikel; Jurío Munárriz, Aránzazu; López Molina, Carlos; Paternain Dallo, Daniel; Sanz Delgado, José Antonio; Couto, P.; Melo Pinto, P.; Automática y Computación; Automatika eta Konputazioa
    This work presents a valuable review for the interested reader of the recent Works using extensions of fuzzy sets in image processing. The chapter is divided as follows: first we recall the basics of the extensions of fuzzy sets, i.e. Type 2 fuzzy sets, interval-valued fuzzy sets and Atanassov’s intuitionistic fuzzy sets. In sequent sections we review the methods proposed for noise removal (sections 3), image enhancement (section 4), edge detection (section 5) and segmentation (section 6). There exist other image segmentation tasks such as video de-interlacing, stereo matching or object representation that are not described in this work.
  • PublicationOpen Access
    Neuro-inspired edge feature fusion using Choquet integrals
    (Elsevier, 2021) Marco Detchart, Cedric; Lucca, Giancarlo; López Molina, Carlos; Miguel Turullols, Laura de; Pereira Dimuro, Graçaliz; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    It is known that the human visual system performs a hierarchical information process in which early vision cues (or primitives) are fused in the visual cortex to compose complex shapes and descriptors. While different aspects of the process have been extensively studied, such as lens adaptation or feature detection, some other aspects, such as feature fusion, have been mostly left aside. In this work, we elaborate on the fusion of early vision primitives using generalizations of the Choquet integral, and novel aggregation operators that have been extensively studied in recent years. We propose to use generalizations of the Choquet integral to sensibly fuse elementary edge cues, in an attempt to model the behaviour of neurons in the early visual cortex. Our proposal leads to a fully-framed edge detection algorithm whose performance is put to the test in state-of-the-art edge detection datasets.
  • PublicationOpen Access
    Aggregation functions to combine RGB color channels in stereo matching
    (Optical Society of America, 2013) Galar Idoate, Mikel; Jurío Munárriz, Aránzazu; López Molina, Carlos; Sanz Delgado, José Antonio; Paternain Dallo, Daniel; Bustince Sola, Humberto; Automática y Computación; Automatika eta Konputazioa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this paper we present a comparison study between different aggregation functions for the combination of RGB color channels in stereo matching problem. We introduce color information from images to the stereo matching algorithm by aggregating the similarities of the RGB channels which are calculated independently. We compare the accuracy of different stereo matching algorithms and aggregation functions. We show experimentally that the best function depends on the stereo matching algorithm considered, but the dual of the geometric mean excels as the most robust aggregation.