San Román Aberasturi, Beatriz

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

San Román Aberasturi

First Name

Beatriz

person.page.departamento

Producción Agraria

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Study of compartmentalization in the visna clinical form of small ruminant lentivirus infection in sheep
    (BioMed Central, 2012) Ramírez Álvarez, Hugo; Reina Arias, Ramsés; Bertolotti, Luigi; Cenoz García, Amaia; Hernández, Mirna Margarita; San Román Aberasturi, Beatriz; Glaría Ezquer, Idoia; Andrés, Ximena de; Crespo Otano, Helena; Jauregui, Paula; Benavides, Julio; Polledo, Laura; Pérez, Valentín; García Marín, Juan F.; Rosati, Sergio; Amorena Zabalza, Beatriz; Andrés Cara, Damián de; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIQ010449.RI1; Gobierno de Navarra / Nafarroako Gobernua: IIQ14064.RI1; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Background: A central nervous system (CNS) disease outbreak caused by small ruminant lentiviruses (SRLV) has triggered interest in Spain due to the rapid onset of clinical signs and relevant production losses. In a previous study on this outbreak, the role of LTR in tropism was unclear and env encoded sequences, likely involved in tropism, were not investigated. This study aimed to analyze heterogeneity of SRLV Env regions - TM amino terminal and SU V4, C4 and V5 segments - in order to assess virus compartmentalization in CNS. Results: Eight Visna (neurologically) affected sheep of the outbreak were used. Of the 350 clones obtained after PCR amplification, 142 corresponded to CNS samples (spinal cord and choroid plexus) and the remaining to mammary gland, blood cells, bronchoalveolar lavage cells and/or lung. The diversity of the env sequences from CNS was 11.1-16.1% between animals and 0.35-11.6% within each animal, except in one animal presenting two sequence types (30% diversity) in the CNS (one grouping with those of the outbreak), indicative of CNS virus sequence heterogeneity. Outbreak sequences were of genotype A, clustering per animal and compartmentalizing in the animal tissues. No CNS specific signature patterns were found. Conclusions: Bayesian approach inferences suggested that proviruses from broncoalveolar lavage cells and peripheral blood mononuclear cells represented the common ancestors (infecting viruses) in the animal and that neuroinvasion in the outbreak involved microevolution after initial infection with an A-type strain. This study demonstrates virus compartmentalization in the CNS and other body tissues in sheep presenting the neurological form of SRLV infection.
  • PublicationOpen Access
    The extradomain a of fibronectin enhances the efficacy of lipopolysaccharide defective Salmonella bacterins as vaccines in mice
    (BioMed Central, 2012) San Román Aberasturi, Beatriz; Lasa Uzcudun, Íñigo; Andrés Cara, Damián de; Amorena Zabalza, Beatriz; Lasarte, Juan José; Grilló Dolset, María Jesús; Garrido González, Victoria; Muñoz Álvaro, Pilar María; Arribillaga, Laura; García Martínez, Begoña; Andrés, Ximena de; Zabaleta Sanz de Acedo, Virginia; Mansilla, Cristina; Farrán Blanch, Inmaculada; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIM10865.RI1-EP12; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The Extradomain A from fibronectin (EDA) has an immunomodulatory role as fusion protein with viral and tumor antigens, but its effect when administered with bacteria has not been assessed. Here, we investigated the adjuvant effect of EDA in mice immunizations against Salmonella enterica subspecies enterica serovar Enteritidis (Salmonella Enteritidis). Since lipopolysaccharide (LPS) is a major virulence factor and the LPS O-polysaccharide (O-PS) is the immunodominant antigen in serological diagnostic tests, Salmonella mutants lacking O-PS (rough mutants) represent an interesting approach for developing new vaccines and diagnostic tests to differentiate infected and vaccinated animals (DIVA tests). Here, antigenic preparations (hot-saline extracts and formalin-inactivated bacterins) from two Salmonella Enteritidis rough mutants, carrying either intact (SE Delta waaL) or deep-defective (SE Delta gal) LPS-Core, were used in combination with EDA. Biotinylated bacterins, in particular SE Delta waaL bacterin, decorated with EDAvidin (EDA and streptavidin fusion protein) improved the protection conferred by hot-saline or bacterins alone and prevented significantly the virulent infection at least to the levels of live attenuated rough mutants. These findings demonstrate the adjuvant effect of EDAvidin when administered with biotinylated bacterins from Salmonella Enteritidis lacking O-PS and the usefulness of BEDA-SE Delta waaL as non-live vaccine in the mouse model.