Aranguren Garacochea, Patricia
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Aranguren Garacochea
First Name
Patricia
person.page.departamento
Ingeniería
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Experimental validation and development of an advanced computational model of a transcritical carbon dioxide vapour compression cycle with a thermoelectric subcooling system(Elsevier, 2022) Casi Satrústegui, Álvaro; Aranguren Garacochea, Patricia; Sánchez, Daniel; Araiz Vega, Miguel; Cabello, Ramón; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; IngenieríaThe inclusion of a thermoelectric subcooler as an alternative to increment the performance of a vapour compression cycle has been proved promising when properly designed and operated for low-medium power units. In this work, a computational model that simulates the behaviour of a carbon dioxide transcritical vapour compression cycle in conjunction with a thermoelectric subcooler system is presented. The computational tool is coded in Matlab and uses Refprop V9.1 to calculate the properties of the refrigerant at each point of the refrigeration cycle. Working conditions, effect of the heat exchangers of the subcooling system, temperature dependent thermoelectric properties, thermal contact resistances and the four thermoelectric effects are taken into account to increment its accuracy. The model has been validated using experimental data to prove the reliability and accuracy of the results obtained and shows deviations between the ±7% for the most relevant outputs. Using the validated computational tool a 13.6 % COP improvement is predicted when optimizing the total number of thermoelectric modules of the subcooling system. The computational experimentally validated tool is properly fit to aid in the design and operation of thermoelectric subcooling systems, being able to predict the optimal configuration and operation settings for the whole refrigeration plant.Publication Open Access Experimental enhancement of a CO2 transcritical refrigerating plant including thermoelectric subcooling(Elsevier, 2020) Sánchez, Daniel; Aranguren Garacochea, Patricia; Casi Satrústegui, Álvaro; Llopis, R.; Cabello, Ramón; Astrain Ulibarrena, David; Ingeniería; IngeniaritzaCO2 is an excellent natural refrigerant that can be used in almost any commercial cooling application thanks to its useful range of evaporative temperatures and excellent environmental properties. However, due to its low critical temperature, CO2 has an important issue related to the low performance of the simplest transcritical refrigeration cycle. To overcome it, the subcooling technique is a well-known method to improve the energy performance of any refrigeration cycle especially the CO2 transcritical one. The IHX is a widely used example of this method that is implemented in almost all standalone systems that use CO2 as a refrigerant. As an alternative of this element, in this work, a thermoelectric subcooling system is presented and tested in a CO2 transcritical refrigerating plant. The experimental tests have been performed at two ambient temperatures: 25 and 30 degrees C, maintaining a constant evaporating level at-10 degrees C and varying the voltage supply to thermoelectric modules and the heat rejection pressure. The results from these experimental tests revealed that the COP and the cooling capacity of the refrigerating plant can be enhanced up to 9.9% and 16.0%, respectively, operating at the optimum operating conditions. Moreover, the experimental tests corroborate the existence of an optimum voltage which maximizes the COP, and the almost linear capacity regulation easily adjustable by varying the voltage supply.