Aranguren Garacochea, Patricia
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Aranguren Garacochea
First Name
Patricia
person.page.departamento
Ingeniería
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Experimental study and optimization of thermoelectric-driven autonomous sensors for the chimney of a biomass power plant(2014) Rodríguez García, Antonio; Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; Aranguren Garacochea, Patricia; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen IngeniaritzaIn the work discussed in this paper a thermoelectric generator was developed to harness waste heat from the exhaust gas of a boiler in a biomass power plant and thus generate electric power to operate a flowmeter installed in the chimney, to make it autonomous. The main objective was to conduct an experimental study to optimize a previous design obtained after computational work based on a simulation model for thermoelectric generators. First, several places inside and outside the chimney were considered as sites for the thermoelectricity-driven autonomous sensor. Second, the thermoelectric generator was built and tested to assess the effect of the cold-side heat exchanger on the electric power, power consumption by the flowmeter, and transmission frequency. These tests provided the best configuration for the heat exchanger, which met the transmission requirements for different working conditions. The final design is able to transmit every second and requires neither batteries nor electric wires. It is a promising application in the field of thermoelectric generation.Publication Open Access Development and experimental validation of a two-stage thermoelectric heat pump computational model for heating applications(Elsevier, 2024) Erro Iturralde, Irantzu; Aranguren Garacochea, Patricia; Martínez Echeverri, Álvaro; Astrain Ulibarrena, David; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra - Nafarroako Unibertsitate PublikoaThe utilisation of thermoelectric technology as a heat pump in heating applications necessitates comprehensive investigation. The scalable nature of thermoelectric technology enables its operation at elevated temperatures without the requirement of refrigerants. In this work, an accurate computational model that can simulate one- and two-stage thermoelectric heat pumps is developed. This model uses the electric-thermal analogy and the finite difference method, including the thermoelectric effects, temperature dependent properties, thermal contact resistances and all heat exchangers, even the intermediate heat exchanger in the case of a two-stage configuration. Moreover, the model has been experimentally validated by built and tested prototypes, being the first time that a two-stage thermoelectric heat pump model is experimentally validated. The discrepancy between the simulated and experimental results is below the ± 10 % for , ± 8 % for generated heat and temperature lift in the airflow, and less than the ± 6 % for consumed power. Additonally, the model simulates real tendencies under different operating conditions, proving the reliability of the developed thermoelectric heat pump model. Finally, the model is used to optimise a thermoelectric system combining one- and two-stage thermoelectric heat pumps, and hybridising them with electric resistances. An airflow of 16.5 m3/h is heated from 25 °C to 160 °C, achieving a maximum of 1.21. Lastly, the importance of considering the thermal resistances of the heat exchangers is computationally modelled and demonstrated. Not taking them into account would overestimate the performance of the TEHP system by more than the 7 %.