Aranguren Garacochea, Patricia
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Aranguren Garacochea
First Name
Patricia
person.page.departamento
Ingeniería
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
14 results
Search Results
Now showing 1 - 10 of 14
Publication Open Access Geothermal thermoelectric generator for Timanfaya National Park(2019) Catalán Ros, Leyre; Astrain Ulibarrena, David; Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Ingeniaritza; Institute of Smart Cities - ISC; IngenieríaDespite being one of the largest renewable sources, geothermal energy is not widely utilized for electricity generation. In the case of shallow Hot Dry Rock (HDR) fields, thermoelectric generators can entail a sustainable alternative to Enhanced Geothermal Systems (EGS). The present work studies two configurations of thermoelectric generators for Timanfaya National Park (Spain), one of the most important Hot Dry Rock fields in the world, with temperatures of 500°C at only 3 meters deep. The first configuration includes biphasic thermosyphons as heat exchangers for both sides, leading to a completely passive thermoelectric generator. The second configuration uses fin dissipators as cold-side heat exchangers.Publication Open Access Energía sostenible: sin malos humos(Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, 2019) Samanes Pascual, Javier; Pascual Miqueleiz, Julio María; Berrueta Irigoyen, Alberto; Araiz Vega, Miguel; Catalán Ros, Leyre; Aranguren Garacochea, Patricia; Arricibita de Andrés, David; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniería; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Ingeniaritza¿Puede España ser sostenible energéticamente? Si alguna vez te has planteado esta pregunta, o quieres saber en qué gastamos la energía y de dónde podría ser obtenida, aquí encontrarás respuestas. Nuestros recursos renovables son inmensos, pero también lo es nuestro consumo. Este libro no solo se centra en analizar la situación actual y las posibilidades que las energías renovables tienen en nuestro país, sino que, presentando de forma clara los datos sobre nuestro gasto energético, permite a cada lector identificar sus mayores consumos, de tal forma que pueda considerar cómo reducirlos. Energía sostenible. Sin malos humos es la adaptación al caso español, actualizando los datos, del libro publicado hace una década por David MacKay en el Reino Unido. La sostenibilidad es hoy en día una preocupación creciente en la sociedad. Pero a menudo este interés se ve contaminado por cifras enormes que resultan muy complicadas de comprender. Además, todos hemos oído hablar en algún momento sobre pequeños gestos al alcance de nuestra mano que podrían permitir un cambio hacia un modelo sostenible. Nada más lejos de la realidad, pequeñas acciones solo permiten pequeños cambios, y el cambio de modelo energético al que nos enfrentamos requiere grandes acciones. Para deshacernos de todo este ruido, en este libro se presentan los números de forma clara y sencilla, utilizando unidades a nuestro alcance y que son comprensibles por todas las personas. Esto permite identificar de una forma mucho más personal los consumos energéticos de nuestro día a día. A lo largo de la primera parte del libro se van construyendo dos columnas: una de color rojo, que representa la agregación de consumos, y otra de color verde, que representa la capacidad de generación. Estas columnas ofrecen una comparación muy visual de la infraestructura renovable que sería necesaria para mantener nuestro ritmo de consumo energético actual. Además, utiliza números «gordos» obtenidos de la experiencia del día a día. Por ejemplo, para calcular la capacidad de generación eólica se parte de una velocidad de viento estimada a partir de la velocidad típica de un ciclista urbano. Toda esta información se encuentra en la primera parte del libro, en los capítulos del 1 al 18. Sin embargo, este libro no se centra únicamente en el análisis de la situación actual, sino que da un paso más y propone alternativas al modelo energético actual con el fin de alcanzar un modelo 100% renovable a medio plazo. Estas medidas incluyen un aumento importante en la potencia renovable instalada, un aumento en la eficiencia energética y algunos ligeros cambios en nuestro estilo de vida que permitan una reducción del consumo. Por supuesto, los tres frentes deben ser atacados al mismo tiempo. Estas propuestas se recogen en la segunda parte del libro, en los capítulos 19 a 32. Por último, este es un libro divulgativo al alcance de todas las personas, que busca transmitir toda la información de forma clara e intuitiva sin perderse en complicados cálculos. Pero si eres de los que les gustan las cuentas, al final del libro encontrarás un apartado en el que se explica de forma rigurosa muchos de los cálculos simples realizados en las primeras partes del libro. Estos apéndices técnicos forman la tercera parte del libro, son los apéndices de la A hasta la H.Publication Open Access Net thermoelectric power generation improvement through heat transfer optimization(Elsevier, 2017) Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Rodríguez García, Antonio; Martínez Echeverri, Álvaro; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen IngeniaritzaThermoelectric generation contributes to obtain a more sustainable energetic system giving its potential to harvest waste heat and convert it into electric power. In the present study a computational optimal net generation of 108.05 MWh/year was produced out of the flue gases of a real tile furnace located in Spain (the equivalent to supply the energy to 31 Spanish dwellings). This maximum generation has been obtained through the optimization of the hot and cold heat exchangers, the number of thermoelectric modules (TEMs) installed and the mass flows of the refrigerants, including the temperature loss of the flue gases and the influence of the heat power to dissipate over the heat dissipators. The results are conclusive, the installation of more TEMs does not always imply higher thermoelectric generation, so the occupancy ratio (δ) has to be optimized. The optimal generation has been achieved covering the 42 % of the surface of the chimney of the tile furnace with TEMs and using heat pipes on the cold side, which present smaller thermal resistances than the finned dissipators for similar consumptions of their fans. Moreover, the high influence of the consumption of the auxiliary equipment shows the importance of considering it to obtain realistic usable electric energy from real applications.Publication Open Access Initiative to increment the number of women in STEM degrees: women, science and technology chair of the Public University of Navarre(IEEE, 2020) Aranguren Garacochea, Patricia; San Martín Biurrun, Idoia; Catalán Ros, Leyre; Martínez Ramírez, Alicia; Jurío Munárriz, Aránzazu; Díaz Lucas, Silvia; Pérez Artieda, Miren Gurutze; Gómez Fernández, Marisol; Barrenechea Tartas, Edurne; Estadística, Informática y Matemáticas; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Estatistika, Informatika eta Matematika; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe Public University of Navarre joined with Navarre Government has created the Women, Science and Technology Chair. This chair arises due to the plummeting tendency of the percentage of women in STEM degrees with the aim of reversing this trend. The programme of activities is defined throughout this contribution by six activities: a Theatre Play, a Poster Award on Final Degree/Masters Project, The 1st Week of Women, Science and Technology, the Promotion of Technical Degrees in schools and high-schools, a Workshop about Gender Stereotypes and the Fostering of Women among Science and Environment. Each activity gained great success and the preset goals were highly accomplished, especially, the 1st Week of Women, Science and Technology activity. The latter achieved a great success both in participation and in repercussion, contributing to visualize the role of women in science and technology.Publication Open Access New opportunities for electricity generation in shallow hot dry rock fields: a study of thermoelectric generators with different heat exchangers(Elsevier, 2019) Catalán Ros, Leyre; Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Pérez Artieda, Miren Gurutze; Astrain Ulibarrena, David; Institute of Smart Cities - ISCDespite being one of the largest renewable sources, geothermal energy is not widely utilized for electricity generation. In order to leverage shallow hot dry rock (HDR) fields, the present paper proposes an alternative to enhanced geothermal systems (EGS): thermoelectric generators. Based on the conditions of Timanfaya National Park, a prototype has been built to experimentally analyze the feasibility of the proposed solution. The prototype is composed by a two phase closed thermosyphon (TPCT) as hot side heat exchanger, two thermoelectric modules, and it considers different cold side heat exchangers: fin dissipators assisted by a fan and loop thermosyphons, both with various geometries. Experiments have demonstrated that loop thermosyphons represent the best alternative due to their low thermal resistance and, especially, due to their lack of auxiliary consumption, leading to a maximum net power generation of 3.29 W per module with a temperature difference of 180 °C (200 °C in the hot side and 20 °C as ambient temperature), 54% more than with fin dissipators. Hence, there exists a new opportunity for electricity generation in shallow hot dry rock fields: thermoelectric generators with biphasic thermosyphons as heat exchangers, a patented and robust solution.Publication Open Access Improvements in the cooling capacity and the COP of a transcritical CO 2 refrigeration plant operating with a thermoelectric subcooling system(Elsevier, 2019) Astrain Ulibarrena, David; Merino Vicente, Amaya; Catalán Ros, Leyre; Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Sánchez, Daniel; Cabello, Ramón; Llopis, R.; Ingeniaritza; Institute of Smart Cities - ISC; IngenieríaRestrictive environmental regulations are driving the use of CO 2 as working fluid in commercial vapour compression plants due to its ultra-low global warming potential (GWP 100 = 1) and its natural condition. However, at high ambient temperatures transcritical operating conditions are commonly achieved causing low energy efficiencies in refrigeration facilities. To solve this issue, several improvements have been implemented, especially in large centralized plants where ejectors, parallel compressors or subcooler systems, among others, are frequently used. Despite their good results, these measures are not suitable for small-capacity systems due mainly to the cost and the complexity of the system. Accordingly, this work presents a new subcooling system equipped with thermoelectric modules (TESC), which thanks to its simplicity, low cost and easy control, results very suitable for medium and small capacity plants. The developed methodology finds the gas-cooler pressure and the electric voltage supplied to the TESC system that maximizes the overall COP of the plant taking into account the ambient temperature, the number of thermoelectric modules used and the thermal resistance of the heat exchangers included in the TESC. The obtained results reveal that, with 20 thermoelectric modules, an improvement of 20% in terms of COP and of 25.6% regarding the cooling capacity can be obtained compared to the base cycle of CO 2 of a small cooling plant refrigerated by air. Compared to a cycle that uses an internal heat exchanger IHX, the improvements reach 12.2% and 19.5% respectively.Publication Open Access Experimental and computational study on thermoelectric generators using thermosyphons with phase change as heat exchangers(Elsevier, 2017) Araiz Vega, Miguel; Martínez Echeverri, Álvaro; Astrain Ulibarrena, David; Aranguren Garacochea, Patricia; Mekanika, Energetika eta Materialen Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Mecánica, Energética y de MaterialesAn important issue in thermoelectric generators is the thermal design of the heat exchangers since it can improve their performance by increasing the heat absorbed or dissipated by the thermoelectric modules. Due to its several advantages, compared to conventional dissipation systems, a thermosyphon heat exchanger with phase change is proposed to be placed on the cold side of thermoelectric generators. Some of these advantages are: high heat-transfer rates; absence of moving parts and lack of auxiliary con- sumption (because fans or pumps are not required); and the fact that these systems are wickless. A com- putational model is developed to design and predict the behaviour of this heat exchangers. Furthermore, a prototype has been built and tested in order to demonstrate its performance and validate the compu- tational model. The model predicts the thermal resistance of the heat exchanger with a relative error in the interval [?8.09;7.83] in the 95% of the cases. Finally, the use of thermosyphons with phase change in thermoelectric generators has been studied in a waste-heat recovery application, stating that including them on the cold side of the generators improves the net thermoelectric production by 36% compared to that obtained with finned dissipators under forced convection.Publication Open Access Auxiliary consumption: a necessary energy that affects thermoelectric generation(Elsevier, 2018) Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Astrain Ulibarrena, David; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen IngeniaritzaWaste heat recovery can apply to a wide range of applications, from transportation, or industries to domestic appliances. Thermoelectric generation technology applied to those cases could produce electrical energy and thus improve their efficiency. A validated computational methodology, which simulates the behavior of any thermoelectric generator and calculates the energy consumption of the auxiliary equipment involved, has been used to determine the potential of waste heat harvesting. The usable energy, the net energy, generated has to be maximized, not only the thermoelectric generation has to be maximized, but also the consumption of the auxiliary equipment has to be minimized, or if possible eliminated. Heat exchangers with a liquid as the heat carrier procure high thermoelectric generations, as their thermal resistances are very low, nevertheless when the consumption of their auxiliary consumption is borne in mind, their use is not that promising. The optimal thermoelectric energy obtained from the flue gases of a real industry using these dissipation systems is 119 MWh/year, while the maximum net energy is 73 MWh/year due to the consumption of the auxiliary equipment. The latest scenario does not only represent a 40% reduction from the optimal thermoelectric generation but also a different optimal working point. The complete elimination of the auxiliary equipment using novel biphasic thermosyphons with free convection at the same application produces a net energy of 128 MWh/year. This novel dissipation technology presents an increase on the thermoelectric generation due to its low thermal resistances, but above all due to the elimination of the auxiliary consumption.Publication Open Access Computational study of geothermal thermoelectric generators with phase change heat exchangers(Elsevier, 2020) Catalán Ros, Leyre; Araiz Vega, Miguel; Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; IngenieríaThe use of thermoelectric generators with phase change heat exchangers has demonstrated to be an interesting and environmentally friendly alternative to enhanced geothermal systems (EGS) in shallow hot dry rock fields (HDR), since rock fracture is avoided. The present paper studies the possibilities of the former proposal in a real location: Timanfaya National Park (Canary Islands, Spain), one of the greatest shallow HDR fields in the world, with 5000 m2 of characterized geothermal anomalies presenting temperatures up to 500 °C at only 2 m deep. For this purpose, a computational model based on the thermal-electrical analogy has been developed and validated thanks to a real prototype, leading to a relative error of less than 8%. Based on this model, two prototypes have been designed and studied for two different areas within the park, varying the size of the heat exchangers and the number of thermoelectric modules installed. As a result, the potential of the solution is demonstrated, leading to an annual electricity generation of 681.53 MWh thanks to the scalability of thermoelectric generators. This generation is obtained without moving parts nor auxiliary consumption, thus increasing the robustness of the device and removing maintenance requirements.Publication Open Access Experimental evidence of the viability of thermoelectric generators to power volcanic monitoring stations(MDPI, 2020) Catalán Ros, Leyre; Garacochea Sáenz, Amaia; Casi Satrústegui, Álvaro; Araiz Vega, Miguel; Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; IngenieríaAlthough there is an important lack of commercial thermoelectric applications mainly due to their low efficiency, there exist some cases in which thermoelectric generators are the best option thanks to their well-known advantages, such as reliability, lack of maintenance and scalability. In this sense, the present paper develops a novel thermoelectric application in order to supply power to volcanic monitoring stations, making them completely autonomous. These stations become indispensable in any volcano since they are able to predict eruptions. Nevertheless, they present energy supply difficulties due to the absence of power grid, the remote access, and the climatology. As a solution, this work has designed a new integral system composed of thermoelectric generators with high efficiency heat exchangers, and its associated electronics, developed thanks to Internet of Things (IoT) technologies. Thus, the heat emitted from volcanic fumaroles is transformed directly into electricity with thermoelectric generators with passive heat exchangers based on phase change, leading to a continuous generation without moving parts that powers different sensors, the information of which is emitted via LoRa. The viability of the solution has been demonstrated both at the laboratory and at a real volcano, Teide (Canary Islands, Spain), where a compact prototype has been installed in an 82 C fumarole. The results obtained during more than eight months of operation prove the robustness and durability of the developed generator, which has been in operation without maintenance and under several kinds of meteorological conditions, leading to an average generation of 0.49W and a continuous emission over more than 14 km.