Aranguren Garacochea, Patricia
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Aranguren Garacochea
First Name
Patricia
person.page.departamento
Ingeniería
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
23 results
Search Results
Now showing 1 - 10 of 23
Publication Open Access Initiative to increment the number of women in STEM degrees: women, science and technology chair of the Public University of Navarre(IEEE, 2020) Aranguren Garacochea, Patricia; San Martín Biurrun, Idoia; Catalán Ros, Leyre; Martínez Ramírez, Alicia; Jurío Munárriz, Aránzazu; Díaz Lucas, Silvia; Pérez Artieda, Miren Gurutze; Gómez Fernández, Marisol; Barrenechea Tartas, Edurne; Estadística, Informática y Matemáticas; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Estatistika, Informatika eta Matematika; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe Public University of Navarre joined with Navarre Government has created the Women, Science and Technology Chair. This chair arises due to the plummeting tendency of the percentage of women in STEM degrees with the aim of reversing this trend. The programme of activities is defined throughout this contribution by six activities: a Theatre Play, a Poster Award on Final Degree/Masters Project, The 1st Week of Women, Science and Technology, the Promotion of Technical Degrees in schools and high-schools, a Workshop about Gender Stereotypes and the Fostering of Women among Science and Environment. Each activity gained great success and the preset goals were highly accomplished, especially, the 1st Week of Women, Science and Technology activity. The latter achieved a great success both in participation and in repercussion, contributing to visualize the role of women in science and technology.Publication Open Access Impact of a thermoelectric subcooler heat exchanger on a carbon dioxide transcritical refrigeration facility(Elsevier, 2022) Casi Satrústegui, Álvaro; Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Alegría Cía, Patricia; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako UnibertsitaTo improve the performance of vapour compression refrigeration cycles, the inclusion of a thermoelectric subcooler for low-medium power units has been the focus of recent studies due to its robustness, compactness and simplicity of operation. In thermoelectric systems, it has been demonstrated that the heat exchangers used in the hot and cold side of the thermoelectric modules have a critical impact in the performance of the system. This influence has not yet been studied for thermoelectric subcooling systems in vapour compression cycles. This work, for the first time, evaluates the impact that the heat exchangers of a thermoelectric subcooler, included in a transcritical carbon dioxide refrigeration cycle, have, in the performance of the refrigeration cycle. The influence is quantified in terms of: optimum working conditions, coefficient of performance and cooling capacity. The results show that, through an optimization of the heat exchangers of the thermoelectric subcooler, the performance improvements on the coefficient of performance using this technology are boosted from 11.96 to 14.75 % and the upgrade in the cooling capacity of the system rises from 21.4 to 26.3 %. Moreover, the optimum gas-cooler working pressure of the system is reduced and the optimum voltage supplied to the thermoelectric modules increases.Publication Open Access Experimental assessment of a thermoelectric subcooler included in a transcritical CO2 refrigeration plant(Elsevier, 2021-05-25) Aranguren Garacochea, Patricia; Sánchez, Daniel; Casi Satrústegui, Álvaro; Cabello, Ramón; Astrain Ulibarrena, David; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISCThis study brings an experimental research that has tested a real transcritical CO2 vapor compression cycle that includes a thermoelectric subcooler at the exit of the gas-cooler of the refrigeration plant. The aforementioned technology hybridization increases the COP of refrigeration systems as long as the subcooling system is properly designed and operated. The experimental facility studied has been tested under constant ambient conditions (30 °C and relative humidity of 55%) and maintaining the evaporating temperature at -10 °C; while the voltage supplied to the thermoelectric modules and the thermal resistances of the heat exchangers located at the thermoelectric subcooler have been experimentally modified. The voltage supplied to the fans located at these heat exchangers was modified implying thermal performance deviation of the heat exchangers and a variation on the power consumption of the cooling facility. The results show an experimental increase on the COP of 11.3% while the cooling capacity increases a 15.3% when the thermoelectric modules are supplied with 2 V and the fans with 9 V. Moreover, the importance of optimizing the voltage supplied to the thermoelectric modules and to the auxiliary consumption of the thermoelectric subcooler is addressed along this research.Publication Open Access Computational study of geothermal thermoelectric generators with phase change heat exchangers(Elsevier, 2020) Catalán Ros, Leyre; Araiz Vega, Miguel; Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; IngenieríaThe use of thermoelectric generators with phase change heat exchangers has demonstrated to be an interesting and environmentally friendly alternative to enhanced geothermal systems (EGS) in shallow hot dry rock fields (HDR), since rock fracture is avoided. The present paper studies the possibilities of the former proposal in a real location: Timanfaya National Park (Canary Islands, Spain), one of the greatest shallow HDR fields in the world, with 5000 m2 of characterized geothermal anomalies presenting temperatures up to 500 °C at only 2 m deep. For this purpose, a computational model based on the thermal-electrical analogy has been developed and validated thanks to a real prototype, leading to a relative error of less than 8%. Based on this model, two prototypes have been designed and studied for two different areas within the park, varying the size of the heat exchangers and the number of thermoelectric modules installed. As a result, the potential of the solution is demonstrated, leading to an annual electricity generation of 681.53 MWh thanks to the scalability of thermoelectric generators. This generation is obtained without moving parts nor auxiliary consumption, thus increasing the robustness of the device and removing maintenance requirements.Publication Open Access Enhancement of the power-to-heat energy conversion process of a thermal energy storage cycle through the use of a thermoelectric heat pump(Elsevier, 2024) Erro Iturralde, Irantzu; Aranguren Garacochea, Patricia; Sorbet Presentación, Francisco Javier; Bonilla-Campos, Íñigo; Astrain Ulibarrena, David; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe principal strategy for achieving a neutral climate entails enhancing the share of renewable energies in the energy mix, in conjunction with promoting innovation in efficient technologies. Thermal energy storage systems have the potential to efficiently handle the intermittent nature of renewable energy sources. Furthermore, these systems can effectively handle shifts in both heat and electrical demand. Thus, efficient power-to-heat technologies are needed to boost thermal energy storage. This manuscript explores the potential of utilising a thermoelectric heat pump system in conjunction with electric resistances for charging a thermal energy storage. In order to achieve elevated temperatures, the thermoelectric system integrates thermoelectric heat pump blocks in a two-stage configuration. Air has been employed as a heat transfer medium for sensible heat storage. Higher airflow rates improve the performance of thermoelectric heat pump system. Moreover, its impact on the optimal voltage supply of the thermoelectric system is observed when it is combined with an electric resistance to achieve elevated temperatures. In comparison to the basic charging process that solely relies on the electric resistance of a thermal energy storage at 120 °C, a significant 30 % increase in power-to-heat energy conversion has been achieved by including the thermoelectric heat pump system. In fact, it efficiently elevates the temperature from the initial ambient temperature of 25 °C to a remarkable 113.1 °C, achieving a coefficient of performance of 1.35 with an airflow rate of 23 m3/h. Therefore, the use of this technology to enhance a complete process of storing excess renewable energy in the form of heat for subsequent use in both heat and electricity through a combined heat and power cycle is demonstrated.Publication Open Access Thermoelectric generator with passive biphasic thermosyphon heat exchanger for waste heat recovery: design and experimentation(MDPI, 2021) Araiz Vega, Miguel; Casi Satrústegui, Álvaro; Catalán Ros, Leyre; Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako GobernuaOne of the measures to fight against the current energy situation and reduce the energy consumption at an industrial process is to recover waste heat and transform it into electric power. Thermoelectric generators can be used for that purpose but there is a lack of experimental studies that can bring this technology closer to reality. This work presents the design, optimizations and development of two devices that are experimented and compared under the same working conditions. The hot side heat exchanger of both generators has been designed using a computational fluid dynamics software and for the cold side of the generators two technologies have been analysed: a finned dissipater that uses a fan and free convection biphasic thermosyphon. The results obtained show a maximum net generation of 6.9 W in the thermoelectric generator with the finned dissipater; and 10.6 W of power output in the generator with the biphasic thermosyphon. These results remark the importance of a proper design of the heat exchangers, trying to get low thermal resistances at both sides of the thermoelectric modules, as well as, the necessity of considering the auxiliary consumption of the equipment employed.Publication Open Access Experimental evidence of the viability of thermoelectric generators to power volcanic monitoring stations(MDPI, 2020) Catalán Ros, Leyre; Garacochea Sáenz, Amaia; Casi Satrústegui, Álvaro; Araiz Vega, Miguel; Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; IngenieríaAlthough there is an important lack of commercial thermoelectric applications mainly due to their low efficiency, there exist some cases in which thermoelectric generators are the best option thanks to their well-known advantages, such as reliability, lack of maintenance and scalability. In this sense, the present paper develops a novel thermoelectric application in order to supply power to volcanic monitoring stations, making them completely autonomous. These stations become indispensable in any volcano since they are able to predict eruptions. Nevertheless, they present energy supply difficulties due to the absence of power grid, the remote access, and the climatology. As a solution, this work has designed a new integral system composed of thermoelectric generators with high efficiency heat exchangers, and its associated electronics, developed thanks to Internet of Things (IoT) technologies. Thus, the heat emitted from volcanic fumaroles is transformed directly into electricity with thermoelectric generators with passive heat exchangers based on phase change, leading to a continuous generation without moving parts that powers different sensors, the information of which is emitted via LoRa. The viability of the solution has been demonstrated both at the laboratory and at a real volcano, Teide (Canary Islands, Spain), where a compact prototype has been installed in an 82 C fumarole. The results obtained during more than eight months of operation prove the robustness and durability of the developed generator, which has been in operation without maintenance and under several kinds of meteorological conditions, leading to an average generation of 0.49W and a continuous emission over more than 14 km.Publication Open Access Experimental evaluation of a transcritical CO2 refrigeration facility working with an internal heat exchanger and a thermoelectric subcooler: performance assessment and comparative(Elsevier, 2022) Casi Satrústegui, Álvaro; Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Sánchez, Daniel; Cabello, Ramón; Astrain Ulibarrena, David; Ingeniería; Ingeniaritza; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe use of carbon dioxide in transcritical state has become one of the most used solutions to comply with the F-Gas directive and reduce greenhouse gases emissions from refrigeration systems at high ambient temperatures. For low-medium power units, the commonly used solutions to improve the efficiency such as the ejector, multiple compressor arrangements, mechanical subcooler, etc., add complexity and increase the cost of the refrigeration facility, which is not ideal for small units. In this low-medium power range, two technologies stand out to increase the performance of a carbon dioxide transcritical cycle: the internal heat exchanger and the thermoelectric subcooler. This study brings a complete research in which both solutions have been tested in the same experimental transcritical carbon dioxide refrigeration facility under the same working conditions. It focuses on the real performance of both systems and discusses the strengths and weaknesses of using an internal heat exchanger or a thermoelectric subcooler. The results show that the thermoelectric subcooler outperforms the internal heat exchanger in both the coefficient of performance and the cooling capacity while also being a more controllable and flexible solution.Publication Open Access Experimental study of a multistage thermoelectric heat pump using different internal heat exchangers(2021) Erro Iturralde, Irantzu; Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Ingeniería; Institute of Smart Cities - ISC; IngeniaritzaThe current need to carry out an energy transition towards a 100 % renewable horizon places the energy storage as the key. Thermal energy storage has the potential to be an optimal technology. Nowadays electrical resistors are used to convert electrical energy to termal energy by heating an air flux which is stored afterwards. In this work, it is proposed to use a multistage thermoelectric heat pump (MS-TEHP) to do this energy conversion. It has been experimentally analyzed and compared the performance of two MS-TEHP with different internal heat exchangers. With this preliminary research, it has been demonstrated the feasibility of this novel thermoelectric technology which aim is to improve the energy conversión process for thermal energy storage.Publication Open Access Experimental analysis of one and two-stage thermoelectric heat pumps to enhance the performance of a thermal energy storage(Elsevier, 2023) Astrain Ulibarrena, David; Aranguren Garacochea, Patricia; Erro Iturralde, Irantzu; Chavarren Oroz, David; Alzuguren Larraza, Iñaki; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISCThis experimental study demonstrates the possibility to enhance the performance of a low-temperature thermal energy storage system (~160 ¿C) based on airflow heating using electrical heaters by including thermoelectric technology. An improvement of the 17 % on COP is reached by using an optimized thermoelectric heat pump system to preheat the airflow, consisting of three one-stage and three pyramidal two-stage thermoelectric heat pumps sequentially installed along the airflow that is heating. This research experimentally analyses and compares the COP of three different configurations of thermoelectric heat pumps: one-stage, square two-stage, and pyramidal two-stage thermoelectric heat pumps. The experimental study aims to characterize the operation of each configuration for heating an airflow of 16.5 m3/h at 25 ¿C as ambient temperature. To that purpose, the airflow inlet temperature, voltage supply, and voltage ratio between stages have been modified. The experimental results show that for 25 ¿C as inlet temperature the one-stage thermoelectric heat pump has the best performance with a maximum generated heat of 78 W. Whereas, a two-stage thermoelectric heat pump is required when the inlet temperature increases. At 40 ¿C as inlet temperature, the square two-stage configuration provides the best performance with a voltage ratio of 2, which reaches a COP of 3.29 generating only 20 W of heat. However, the pyramidal two-stage configuration is able to achieve the maximum heat outputs with a voltage ratio of 1, generating 172; 161; 149 and 138 W, with corresponding COP values of 1.17; 1.16; 1.14 and 1.11 for inlet temperatures of 25; 40; 55 and 70 ¿C. This configuration is the one that achieves the greatest COP values with high inlet temperatures.
- «
- 1 (current)
- 2
- 3
- »