Palma Dovis, Leopoldo
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Palma Dovis
First Name
Leopoldo
person.page.departamento
Producción Agraria
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access UV protection and insecticidal activity of microencapsulated Vip3Ag4 protein in Bacillus megaterium(Elsevier, 2024-06-17) Palma Dovis, Leopoldo; Ruiz de Escudero Fuentemilla, Íñigo; Mañeru Oria, Francisco Javier; Berry, Colin; Caballero Murillo, Primitivo; Institute for Multidisciplinary Research in Applied Biology - IMABIn this study, secretable Vip3Ag4 protein was encapsulated in Bacillus megaterium and used for quantitative bioassays, in order to determine the UV photoprotective capacity of the cell, for preventing inactivation of the insecticidal activity of the protein. The non-encapsulated and purified protein was exposed to the UV light showing a LC50 of 518 ng/cm2 against Spodoptera littoralis larvae, whereas the exposed encapsulated protein exhibited 479 ng/cm2. In addition to the capability to accumulate Vip3 proteins for the development of novel insecticidal formulates, the B. megaterium cell has demonstrated to provide moderate protection against the deleterious action of UV light.Publication Open Access Genome sequence analysis of native Xenorhabdus strains isolated from Entomopathogenic nematodes in Argentina(MDPI, 2024) Palma Dovis, Leopoldo; Frizzo, Laureano; Kaiser, Sebastian; Berry, Colin; Caballero Murillo, Primitivo; Bode, Helge B.; Valle, Eleodoro E. del; Institute for Multidisciplinary Research in Applied Biology - IMABEntomopathogenic nematodes from the genus Steinernema (Nematoda: Steinernematidae) are capable of causing the rapid killing of insect hosts, facilitated by their association with symbiotic Gram-negative bacteria in the genus Xenorhabdus (Enterobacterales: Morganellaceae), positioning them as interesting candidate tools for the control of insect pests. In spite of this, only a limited number of species from this bacterial genus have been identified from their nematode hosts and their insecticidal properties documented. This study aimed to perform the genome sequence analysis of fourteen Xenorhabdus strains that were isolated from Steinernema nematodes in Argentina. All of the strains were found to be able of killing 7th instar larvae of Galleria mellonella (L.) (Lepidoptera: Pyralidae). Their sequenced genomes harbour 110 putative insecticidal proteins including Tc, Txp, Mcf, Pra/Prb and App homologs, plus other virulence factors such as putative nematocidal proteins, chitinases and secondary metabolite gene clusters for the synthesis of different bioactive compounds. Maximum-likelihood phylogenetic analysis plus average nucleotide identity calculations strongly suggested that three strains should be considered novel species. The species name for strains PSL and Reich (same species according to % ANI) is proposed as Xenorhabdus littoralis sp. nov., whereas strain 12 is proposed as Xenorhabdus santafensis sp. nov. In this work, we present a dual insight into the biocidal potential and diversity of the Xenorhabdus genus, demonstrated by different numbers of putative insecticidal genes and biosynthetic gene clusters, along with a fresh exploration of the species within this genus.