Pellejero, Ismael

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Pellejero

First Name

Ismael

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    Functionalization of 3D printed ABS filters with MOF for toxic gas removal
    (Elsevier, 2020) Pellejero, Ismael; Almazán, Fernando; Lafuente, María; Urbiztondo, Miguel A.; Dobrek, Martin; Bechelany, Mikhael; Julbe, Anne; Gandía Pascual, Luis; Institute for Advanced Materials and Mathematics - INAMAT2; Gobierno de Navarra / Nafarroako Gobernua, PC052-23; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Acrylonitrile butadiene styrene (ABS) is one of the most extensively used polymer in 3D printing manufacturing due to its competitive thermal and mechanical properties. Recently, a special attention has been devoted to novel ABS composites featuring extra functionalities e.g. in the area of VOC removal. Herein, we report on a facile protocol for the functionalization of 3D printed ABS filters with a MOF (Metal- Organic Framework) material (ZIF-8) targeting the conception of attractive gas filters. The proposed synthesis strategy consists in low temperature ALD (Atomic Layer Deposition) of ZnO on the ABS grid followed by the hydrothermal conversion of ZnO to ZIF-8, both steps being conducted at 60 °C. In such way, the method enables an effective growth of ZIF-8 without altering the stability of the polymeric ABS support. The as-fabricated ABS/ZIF-8 filters offer a promising adsorption behaviour for dimethyl methylphosphonate (~20.4 mg of DMMP per gram of ZIF-8), thus proving their potential for toxic gas capture applications.
  • PublicationOpen Access
    The 3D-printing fabrication of multichannel silicone microreactors for catalytic applications
    (MDPI, 2023) Ibáñez de Garayo Quilchano, Alejandro; Imizcoz Aramburu, Mikel; Maisterra Udi, Maitane; Almazán, Fernando; Sanz Carrillo, Diego; Bimbela Serrano, Fernando; Cornejo Ibergallartu, Alfonso; Pellejero, Ismael; Gandía Pascual, Luis; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Microstructured reactors (MSRs) are especially indicated for highly demanding heterogeneous catalysis due to the small channel dimensions that minimize diffusional limitations and enhance mass and heat transport between the fluid and the catalyst. Herein, we present the fabrication protocol of the fused filament 3D printing of silicone monolithic microreactors based on a multichannel design. Microchannels of 200 to 800 µm in width and up to 20 mm in length were developed following the scaffold-removal procedure using acrylonitrile butadiene styrene (ABS) as the material for the 3D-printed scaffold fabrication, polydimethylsiloxane (PDMS) as the building material, and acetone as the ABS removing agent. The main printing parameters such as temperature and printing velocity were optimized in order to minimize the bridging effect and filament collapsing and intercrossing. Heterogeneous catalysts were incorporated into the microchannel walls during fabrication, thus avoiding further post-processing steps. The nanoparticulated catalyst was deposited on ABS scaffolds through dip coating and transferred to the microchannel walls during the PDMS pouring step and subsequent scaffold removal. Two different designs of the silicone monolithic microreactors were tested for four catalytic applications, namely liquid-phase 2-nitrophenol photohydrogenation and methylene blue photodegradation in aqueous media, lignin depolymerization in ethanol, and gas-phase CO2 hydrogenation, in order to investigate the microreactor performance under different reaction conditions (temperature and solvent) and establish the possible range of applications.
  • PublicationOpen Access
    UiO-66 MOF-Derived Ru@ZrO2 catalysts for photo-thermal CO2 hydrogenation
    (MDPI, 2023) Almazán, Fernando; Lafuente Adiego, Marta; Echarte Villeras, Amaya; Imizcoz Aramburu, Mikel; Pellejero, Ismael; Gandía Pascual, Luis; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The use of metal–organic frameworks (MOFs) as templates or precursors in the manufacture of heterogeneous catalysts is highly attractive due to the transfer of MOFs’ inherent porosity and homogeneous metallic distribution to the derived structure. Herein, we report on the preparation of MOF-derived Ru@ZrO2 catalysts by controlled thermal treatment of zirconium-based MOF UiO66 with ruthenium moieties. Ru3+ (3 or 10 mol%) precursor was added to UiO-66 synthesis and, subsequently, the as-synthesized hybrid structure was calcined in flowing air at different temperatures (400–600 ◦C) to obtain ZrO2 -derived oxides doped with highly dispersed Ru metallic clusters. The materials were tested for the catalytic photo-thermal conversion of CO2 to CH4 . Methanation experiments were conducted in a continuous flow (feed flow rate of 5 sccm and 1:4 CO2 to H2 molar ratio) reactor at temperatures from 80 to 300 ◦C. Ru0.10@ZrO2 catalyst calcined at 600 ◦C was able to hydrogenate CO2 to CH4 with production rates up to 65 mmolCH4·gcat. –1 ·h –1, CH4 yield of 80% and nearly 100% selectivity at 300 ◦C. The effect of the illumination was investigated with this catalyst using a high-power visible LED. A CO2 conversion enhancement from 18% to 38% was measured when 24 sun of visible LED radiation was applied, mainly due to the increase in the temperature as a result of the efficient absorption of the radiation received. MOF-derived Ru@ZrO2 catalysts have resulted to be noticeably active materials for the photo-thermal hydrogenation of CO2 for the purpose of the production of carbon-neutral methane. A remarkable effect of the ZrO2 crystalline phase on the CH4 selectivity has been found, with monoclinic zirconia being much more selective to CH4 than its cubic allotrope.
  • PublicationOpen Access
    Gold nanoparticles capped with a novel titanium(iv)-containing polyoxomolybdate cluster: selective and enhanced bactericidal effect against Escherichia coli
    (Wiley, 2024) Paesa, Mónica; Almazán, Fernando; Yus Argón, Cristina; Sebastián, Víctor; Arruebo Gordo, Manuel; Reinoso, Santiago; Pellejero, Ismael; Gandía Pascual, Luis; Mendoza, Gracia; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Bacterial infections are a public health threat of increasing concern in medical care systems; hence, the search for novel strategies to lower the use of antibiotics and their harmful effects becomes imperative. Herein, the antimicrobial performance of four polyoxometalate (POM)-stabilized gold nanoparticles (Au@POM) against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as Gram-negative and Gram-positive bacteria models, respectively, is studied. The bactericidal studies performed, both in planktonic and sessile forms, evidence the antimicrobial potential of these hybrid nanostructures with selectivity toward Gram-negative species. In particular, the Au@GeMoTi composite with the novel [Ti2(HGeMo7O28)2]10¿ POM capping ligand exhibits outstanding bactericidal efficiency with a minimum inhibitory concentration of just 3.12 µm for the E. coli strain, thus outperforming the other three Au@POM counterparts. GeMoTi represents the fourth example of a water-soluble TiIV-containing polyoxomolybdate, and among them, the first sandwich-type structure having heteroatoms in high-oxidation state. The evaluation of the bactericidal mechanisms of action points to the cell membrane hyperpolarization, disruption, and subsequent nucleotide leakage and the low cytotoxicity exerted on five different cell lines at antimicrobial doses demonstrates the antibiotic-like character. These studies highlight the successful design and development of a new POM-based nanomaterial able to eradicate Gram-negative bacteria without damaging mammalian cells.