Pellejero, Ismael

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Pellejero

First Name

Ismael

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Innovative catalyst integration on transparent silicone microreactors for photocatalytic applications
    (Elsevier, 2022) Pellejero, Ismael; Clemente, Alberto; Navajas León, Alberto; Vesperinas Oroz, José Javier; Urbiztondo, Miguel A.; Gandía Pascual, Luis; Institute for Advanced Materials and Mathematics - INAMAT2; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Reproducible and controllable incorporation and immobilization of catalysts and other active particles onto silicone microreactor channels is still challenging. In this work, we present an innovative fabrication protocol to attain affordable, custom-designed photocatalytic microreactors in a fast and simple manner. In this protocol, a 3D-printed ABS microreactor mold is first dip-coated with the photocatalyst, and subsequently, the catalytic layer is transferred onto the microchannel walls by indirect immobilization during the silicone casting and scaffold removal step. Serpentine-shaped microreactors have been satisfactorily fabricated with Au@POM-impregnated TiO2 nanoparticles (Au@POM/TiO2; Au 0.18 % w/w, POM: H3PW12O40) as the integrated photocatalytic layer. The suitability of our fabrication method has been validated on the basis of the excellent photocatalytic performance shown by the microreactors in a model test reaction such as the continuous-flow photoreduction of 4-nitrophenol to 4-aminophenol with NaBH4 and monitored by UV-Vis spectroscopy.
  • PublicationOpen Access
    In situ synthesis of SERS-active Au@POM nanostructures in a microfluidic device for real-time detection of water pollutants
    (American Chemical Society, 2020) Lafuente Adiego, Marta; Pellejero, Ismael; Clemente, Alberto; Urbiztondo, Miguel A.; Mallada, Reyes; Reinoso, Santiago; Pina, María del Pilar; Gandía Pascual, Luis; Institute for Advanced Materials and Mathematics - INAMAT2; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We present a simple, versatile and low-cost approach for the preparation of SERS-active regions within a microfluidic channel 50 cm in length. The approach involves the UV-light-driven formation of polyoxometalate-decorated gold nanostructures, Au@POM (POM: H3PW12O40 (PW) and H3PMo12O40 (PMo)), that self-assemble in situ on the surface of the PDMS microchannels without any extra functionalization procedure. The fabricated LoCs were characterized by SEM, UV-Vis, Raman, XRD and XPS techniques. The SERS activity of the resulting Au@POM–coated lab-on-a-chip (LoC) devices was evaluated in both static and flow conditions using Rhodamine R6G. The SERS response of Au@PW–based LoCs was found superior to Au@PMo counterparts and outstanding when compared to reported data on metal@POM nanocomposites. We demonstrate the potentialities of both Au@POM–coated LoCs as analytical platforms for real time detection of the organophosphorous pesticide Paraoxon-methyl at 10-6 M concentration level.