Pellejero, Ismael

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Pellejero

First Name

Ismael

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Functionalization of 3D printed ABS filters with MOF for toxic gas removal
    (Elsevier, 2020) Pellejero, Ismael; Almazán, Fernando; Lafuente, María; Urbiztondo, Miguel A.; Dobrek, Martin; Bechelany, Mikhael; Julbe, Anne; Gandía Pascual, Luis; Institute for Advanced Materials and Mathematics - INAMAT2; Gobierno de Navarra / Nafarroako Gobernua, PC052-23; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Acrylonitrile butadiene styrene (ABS) is one of the most extensively used polymer in 3D printing manufacturing due to its competitive thermal and mechanical properties. Recently, a special attention has been devoted to novel ABS composites featuring extra functionalities e.g. in the area of VOC removal. Herein, we report on a facile protocol for the functionalization of 3D printed ABS filters with a MOF (Metal- Organic Framework) material (ZIF-8) targeting the conception of attractive gas filters. The proposed synthesis strategy consists in low temperature ALD (Atomic Layer Deposition) of ZnO on the ABS grid followed by the hydrothermal conversion of ZnO to ZIF-8, both steps being conducted at 60 °C. In such way, the method enables an effective growth of ZIF-8 without altering the stability of the polymeric ABS support. The as-fabricated ABS/ZIF-8 filters offer a promising adsorption behaviour for dimethyl methylphosphonate (~20.4 mg of DMMP per gram of ZIF-8), thus proving their potential for toxic gas capture applications.
  • PublicationOpen Access
    Innovative catalyst integration on transparent silicone microreactors for photocatalytic applications
    (Elsevier, 2022) Pellejero, Ismael; Clemente, Alberto; Navajas León, Alberto; Vesperinas Oroz, José Javier; Urbiztondo, Miguel A.; Gandía Pascual, Luis; Institute for Advanced Materials and Mathematics - INAMAT2; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Reproducible and controllable incorporation and immobilization of catalysts and other active particles onto silicone microreactor channels is still challenging. In this work, we present an innovative fabrication protocol to attain affordable, custom-designed photocatalytic microreactors in a fast and simple manner. In this protocol, a 3D-printed ABS microreactor mold is first dip-coated with the photocatalyst, and subsequently, the catalytic layer is transferred onto the microchannel walls by indirect immobilization during the silicone casting and scaffold removal step. Serpentine-shaped microreactors have been satisfactorily fabricated with Au@POM-impregnated TiO2 nanoparticles (Au@POM/TiO2; Au 0.18 % w/w, POM: H3PW12O40) as the integrated photocatalytic layer. The suitability of our fabrication method has been validated on the basis of the excellent photocatalytic performance shown by the microreactors in a model test reaction such as the continuous-flow photoreduction of 4-nitrophenol to 4-aminophenol with NaBH4 and monitored by UV-Vis spectroscopy.