Gil Monreal, Miriam

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Gil Monreal

First Name

Miriam

person.page.departamento

Ciencias

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    ERF-VII transcription factors induce ethanol fermentation in response to amino acid biosynthesis-inhibiting herbicides
    (Oxford University Press, 2019) Gil Monreal, Miriam; Giuntoli, Beatrice; Zabalza Aznárez, Ana; Licausi, Francesco; Royuela Hernando, Mercedes; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Herbicides inhibiting either aromatic or branched-chain amino acid biosynthesis trigger similar physiological responses in plants, despite their different mechanism of action. Both types of herbicides are known to activate ethanol fermentation by inducing the expression of fermentative genes; however, the mechanism of such transcriptional regulation has not been investigated so far. In plants exposed to low-oxygen conditions, ethanol fermentation is transcriptionally controlled by the ethylene response factors-VII (ERF-VIIs), whose stability is controlled in an oxygen-dependent manner by the Cys-Arg branch of the N-degron pathway. In this study, we investigated the role of ERF-VIIs in the regulation of the ethanol fermentation pathway in herbicide-treated Arabidopsis plants grown under aerobic conditions. Our results demonstrate that these transcriptional regulators are stabilized in response to herbicide treatment and are required for ethanol fermentation in these conditions. We also observed that mutants with reduced fermentative potential exhibit higher sensitivity to herbicide treatments, thus revealing the existence of a mechanism that mimics oxygen deprivation to activate metabolic pathways that enhance herbicide tolerance. We speculate that this signaling pathway may represent a potential target in agriculture to affect tolerance to herbicides that inhibit amino acid biosynthesis.
  • PublicationOpen Access
    Induction of the PDH bypass and upregulation of the ALDH7B4 in plants treated with herbicides inhibiting amino acid biosynthesis
    (Elsevier, 2017) Gil Monreal, Miriam; Zabalza Aznárez, Ana; Missihoun, Tagnon D.; Dormann, Peter; Bartels, Dorothea; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Imazamox and glyphosate represent two classes of herbicides that inhibit the activity of acetohydroxyacid synthase in the branched-chain amino acid biosynthesis pathway and the activity of 5-enolpyruvylshikimate-3-phosphate synthase in the aromatic amino acid biosynthesis pathway, respectively. However, it is still unclear how imazamox and glyphosate lead to plant death. Both herbicides inhibit amino-acid biosynthesis and were found to induce ethanol fermentation in plants, but an Arabidopsis mutant deficient in alcohol dehydrogenase 1 was neither more susceptible nor more resistant than the wild-type to the herbicides. In this study, we investigated the effects of the amino acid biosynthesis inhibitors, imazamox and glyphosate, on the pyruvate dehydrogenase bypass reaction and fatty acid metabolism in A. thaliana. We found that the pyruvate dehydrogenase bypass was upregulated following the treatment by the two herbicides. Our results suggest that the Arabidopsis aldehyde dehydrogenase 7B4 gene might be participating in the pyruvate dehydrogenase bypass reaction. We evaluated the potential role of the aldehyde dehydrogenase 7B4 upon herbicide treatment in the plant defence mechanism. Plants that overexpressed the ALDH7B4 gene accumulated less soluble sugars, starch, and fatty acids and grew better than the wild-type after herbicide treatment. We discuss how the upregulation of the ALDH7B4 alleviates the effects of the herbicides, potentially through the detoxification of the metabolites produced in the pyruvate dehydrogenase bypass.