(IEEE, 2023) Irujo Izcue, Elisa; Berrueta Irigoyen, Alberto; Lalinde Sainz, Iñaki; Arza, Joseba; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
Lithium-ion batteries are energy storage systems used in an increasing number of applications. Due to their flammable materials, their use entails risks of fire and explosion. The study of the abuse operation of these batteries before reaching the thermal runaway is a relevant research topic to prevent safety issues. There are various studies in the bibliography providing exhaustive thermal studies of the safe operating area, as well as concerning the thermal runaway. However, the onset irreversible reactions, that take place at a SOC around 110%, have not been properly analyzed. We present in this contribution an experimental study of this onset reaction measured in pouch Li-ion cells under various conditions of charge current and temperature. We also propose a lumped-parameter thermal model for the cell, which allows a detailed characterization of this exothermic reaction. The results achieved in this contributions can be a key tool to prevent overcharge accidents that may arise due to malfunctioning of the battery charger or battery management system.