Person:
Miguel Turullols, Laura de

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Miguel Turullols

First Name

Laura de

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

ISC. Institute of Smart Cities

ORCID

0000-0002-7665-2801

person.page.upna

810922

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    The interval-valued Choquet integral based on admissible permutations
    (IEEE, 2018) Paternain Dallo, Daniel; Miguel Turullols, Laura de; Ochoa Lezaun, Gustavo; Lizasoain Iriso, María Inmaculada; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Aggregation or fusion of interval data is not a trivial task, since the necessity of arranging data arises in many aggregation functions, such as OWA operators or the Choquet integral. Some arranging procedures have been given to solve this problem, but they need certain parameters to be set. In order to solve this problem, in this work we propose the concept of an admissible permutation of intervals. Based on this concept, which avoids any parameter selection, we propose a new approach for the interval-valued Choquet integral that takes into account every possible permutation fitting to the considered ordinal structure of data. Finally, a consensus among all the permutations is constructed.
  • PublicationOpen Access
    Unbalanced interval-valued OWA operators
    (Springer Berlin Heidelberg, 2016) Miguel Turullols, Laura de; Bustince Sola, Humberto; Barrenechea Tartas, Edurne; Pagola Barrio, Miguel; Fernández Fernández, Francisco Javier; Automatika eta Konputazioa; Institute of Smart Cities - ISC; Automática y Computación
    In this work, we introduce a new class of functions defned on the interval-valued setting. These functions extend classical OWA operators but allow for diferent weighting vectors to handle the lower bounds and the upper bounds of the considered intervals. As a consequence, the resulting functions need not be an interval-valued aggregation function, so we study, in the case of the lexicographical order, when these operators give an interval as output and are monotone. We also discuss an illustrative example on a decision making problem in order to show the usefulness of our developments.