Miguel Turullols, Laura de
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Miguel Turullols
First Name
Laura de
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
18 results
Search Results
Now showing 1 - 10 of 18
Publication Open Access Neuro-inspired edge feature fusion using Choquet integrals(Elsevier, 2021) Marco Detchart, Cedric; Lucca, Giancarlo; López Molina, Carlos; Miguel Turullols, Laura de; Pereira Dimuro, Graçaliz; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIt is known that the human visual system performs a hierarchical information process in which early vision cues (or primitives) are fused in the visual cortex to compose complex shapes and descriptors. While different aspects of the process have been extensively studied, such as lens adaptation or feature detection, some other aspects, such as feature fusion, have been mostly left aside. In this work, we elaborate on the fusion of early vision primitives using generalizations of the Choquet integral, and novel aggregation operators that have been extensively studied in recent years. We propose to use generalizations of the Choquet integral to sensibly fuse elementary edge cues, in an attempt to model the behaviour of neurons in the early visual cortex. Our proposal leads to a fully-framed edge detection algorithm whose performance is put to the test in state-of-the-art edge detection datasets.Publication Open Access Strengthened ordered directional and other generalizations of monotonicity for aggregation functions(Springer, 2018) Sesma Sara, Mikel; Miguel Turullols, Laura de; Lafuente López, Julio; Barrenechea Tartas, Edurne; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaA tendency in the theory of aggregation functions is the generalization of the monotonicity condition. In this work, we examine the latest developments in terms of different generalizations. In particular, we discuss strengthened ordered directional monotonicity, its relation to other types of monotonicity, such as directional and ordered directional monotonicity and the main properties of the class of functions that are strengthened ordered directionally monotone. We also study some construction methods for such functions and provide a characterization of usual monotonicity in terms of these notions of monotonicity.Publication Open Access The interval-valued Choquet integral based on admissible permutations(IEEE, 2018) Paternain Dallo, Daniel; Miguel Turullols, Laura de; Ochoa Lezaun, Gustavo; Lizasoain Iriso, María Inmaculada; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaAggregation or fusion of interval data is not a trivial task, since the necessity of arranging data arises in many aggregation functions, such as OWA operators or the Choquet integral. Some arranging procedures have been given to solve this problem, but they need certain parameters to be set. In order to solve this problem, in this work we propose the concept of an admissible permutation of intervals. Based on this concept, which avoids any parameter selection, we propose a new approach for the interval-valued Choquet integral that takes into account every possible permutation fitting to the considered ordinal structure of data. Finally, a consensus among all the permutations is constructed.Publication Open Access Local properties of strengthened ordered directional and other forms of monotonicity(Springer, 2019) Sesma Sara, Mikel; Miguel Turullols, Laura de; Mesiar, Radko; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA13In this study we discuss some of the recent generalized forms of monotonicity, introduced in the attempt of relaxing the monotonicity condition of aggregation functions. Specifically, we deal with weak, directional, ordered directional and strengthened ordered directional monotonicity. We present some of the most relevant properties of the functions that satisfy each of these monotonicity conditions and, using the concept of pointwise directional monotonicity, we carry out a local study of the discussed relaxations of monotonicity. This local study enables to highlight the differences between each notion of monotonicity. We illustrate such differences with an example of a restricted equivalence function.Publication Open Access On the notion of fuzzy dispersion measure and its application to triangular fuzzy numbers(Elsevier, 2023) Roldán López de Hierro, Antonio Francisco; Bustince Sola, Humberto; Rueda, María del Mar; Roldán, Concepción; Miguel Turullols, Laura de; Guerra Errea, Carlos; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaIn this paper, based on the analysis of the most widely used dispersion measure in the real context (namely, the variance), we introduce the notion of fuzzy dispersion measure associated to a finite set of data given by fuzzy numbers. This measure is implemented as a fuzzy number, so there is no loss of information caused by any defuzzification. The proposed concept satisfies the usual properties in a genuinely fuzzy sense and it avoids limitations in terms of its geometric shape or its analytical properties: under this conception, it could have a piece of its support in the negative part of the real line. This novel notion can be interpreted as a way of fusing the information included in a fuzzy data set in order to make a decision based on its dispersion. To illustrate the main characteristics of this approach, we present an example of a fuzzy dispersion measure that allows to conclude that this new way to deal this problem is coherent, at least, from the point of view of human intuition.Publication Open Access Hyperspectral imaging using notions from type-2 fuzzy sets(Springer, 2019) López Maestresalas, Ainara; Miguel Turullols, Laura de; López Molina, Carlos; Arazuri Garín, Silvia; Bustince Sola, Humberto; Jarén Ceballos, Carmen; Ingeniería; Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaFuzzy set theory has developed a prolific armamentarium of mathematical tools for each of the topics that has fallen within its scope. One of such topics is data comparison, for which a range of operators has been presented in the past. These operators can be used within the fuzzy set theory, but can also be ported to other scenarios in which data are provided in various representations. In this work, we elaborate on notions for type-2 fuzzy sets, specifically for the comparison of type-2 fuzzy membership degrees, to create function comparison operators. We further apply these operators to hyperspectral imaging, in which pixelwise data are provided as functions over a certain energy spectra. The performance of the functional comparison operators is put to the test in the context of in-laboratory hyperspectral image segmentation.Publication Embargo Non-symmetric over-time pooling using pseudo-grouping functions for convolutional neural networks(Elsevier, 2024-07-01) Ferrero Jaurrieta, Mikel; Paiva, Rui; Cruz, Anderson; Bedregal, Benjamin; Miguel Turullols, Laura de; Takáč, Zdenko; López Molina, Carlos; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCConvolutional Neural Networks (CNNs) are a family of networks that have become state-of-the-art in several fields of artificial intelligence due to their ability to extract spatial features. In the context of natural language processing, they can be used to build text classification models based on textual features between words. These networks fuse local features to generate global features in their over-time pooling layers. These layers have been traditionally built using the maximum function or other symmetric functions such as the arithmetic mean. It is important to note that the order of input local features is significant (i.e. the symmetry is not an inherent characteristic of the model). While this characteristic is appropriate for image-oriented CNNs, where symmetry might make the network robust to image rigid transformations, it seems counter-productive for text processing, where the order of the words is certainly important. Our proposal is, hence, to use non-symmetric pooling operators to replace the maximum or average functions. Specifically, we propose to perform over-time pooling using pseudo-grouping functions, a family of non-symmetric aggregation operators that generalize the maximum function. We present a construction method for pseudo-grouping functions and apply different examples of this family to over-time pooling layers in text-oriented CNNs. Our proposal is tested on seven different models and six different datasets in the context of engineering applications, e.g. text classification. The results show an overall improvement of the models when using non-symmetric pseudo-grouping functions over the traditional pooling function.Publication Open Access Convolution lattices(Elsevier, 2018) Miguel Turullols, Laura de; Bustince Sola, Humberto; Baets, Bernard de; Automatika eta Konputazioa; Institute of Smart Cities - ISC; Automática y ComputaciónWe propose two convolution operations on the set of functions between two bounded lattices and investigate the algebraic structure they constitute, in particular the lattice laws they satisfy. Each of these laws requires the restriction to a specific subset of functions, such as normal, idempotent or convex functions. Combining all individual results, we identify the maximal subsets of functions resulting in a bounded lattice, and show this result to be equivalent to the distributivity of the lattice acting as domain of the functions. Furthermore, these lattices turn out to be distributive as well. Additionally, we show that for the larger subset of idempotent functions, although not satisfying the absorption laws, the convolution operations satisfy the Birkhoff equation.Publication Open Access Extension of restricted equivalence functions and similarity measures for type-2 fuzzy sets(IEEE, 2021) Miguel Turullols, Laura de; Santiago, Regivan; Wagner, Christian; Garibaldi, Jonathan M.; Takáč, Zdenko; Roldán López de Hierro, Antonio Francisco; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this work we generalize the notion of restricted equivalence function for type-2 fuzzy sets, leading to the notion of extended restricted equivalence functions. We also study how under suitable conditions, these new functions recover the standard axioms for restricted equivalence functions in the real setting. Extended restricted equivalence functions allow us to compare any two general type-2 fuzzy sets and to generate a similarity measure for type-2 fuzzy sets. The result of this similarity is a fuzzy set on the same referential set (i.e., domain) as the considered type-2 fuzzy set. The latter is crucial for applications such as explainable AI and decision making, as it enables an intuitive interpretation of the similarity within the domain-specific context of the fuzzy sets. We show how this measure can be used to compare type-2 fuzzy sets with different membership functions in such a way that the uncertainty linked to type-2 fuzzy sets is not lost. This is achieved by generating a fuzzy set rather than a single numerical value. Furthermore, we also show how to obtain a numerical value for discrete referential sets.Publication Open Access New measures for comparing matrices and their application to image processing(Elsevier, 2018) Sesma Sara, Mikel; Miguel Turullols, Laura de; Pagola Barrio, Miguel; Burusco Juandeaburre, Ana; Mesiar, Radko; Bustince Sola, Humberto; Automatika eta Konputazioa; Institute of Smart Cities - ISC; Automática y Computación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this work we present the class of matrix resemblance functions, i.e., functions that measure the difference between two matrices. We present two construction methods and study the properties that matrix resemblance functions satisfy, which suggest that this class of functions is an appropriate tool for comparing images. Hence, we present a comparison method for grayscale images whose result is a new image, which enables to locate the areas where both images are equally similar or dissimilar. Additionally, we propose some applications in which this comparison method can be used, such as defect detection in industrial manufacturing processes and video motion detection and object tracking.