Person:
Solano Goñi, Cristina

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Solano Goñi

First Name

Cristina

person.page.departamento

Ciencias de la Salud

person.page.instituteName

ORCID

0000-0002-6207-1766

person.page.upna

4363

Name

Search Results

Now showing 1 - 10 of 22
  • PublicationOpen Access
    The regulon of the RNA chaperone CspA and its auto-regulation in Staphylococcus aureus
    (Oxford University Press, 2018) Caballero Sánchez, Carlos; Menéndez Gil, Pilar; Catalán Moreno, Arancha; Vergara Irigaray, Marta; García Martínez, Begoña; Segura, Víctor; Irurzun Domínguez, Naiara; Villanueva San Martín, Maite; Ruiz de los Mozos Aliaga, Igor; Solano Goñi, Cristina; Lasa Uzcudun, Íñigo; Toledo Arana, Alejandro; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    RNA-binding proteins (RBPs) are essential to finetune gene expression. RBPs containing the coldshock domain are RNA chaperones that have been extensively studied. However, the RNA targets and specific functions for many of them remain elusive. Here, combining comparative proteomics and RBPimmunoprecipitation- microarray profiling, we have determined the regulon of the RNA chaperone CspA of Staphylococcus aureus. Functional analysis revealed that proteins involved in carbohydrate and ribonucleotide metabolism, stress response and virulence gene expression were affected by cspA deletion. Stress-associated phenotypes such as increased bacterial aggregation and diminished resistance to oxidative-stress stood out. Integration of the proteome and targetome showed that CspA posttranscriptionally modulates both positively and negatively the expression of its targets, denoting additional functions to the previously proposed translation enhancement. One of these repressed targets was its own mRNA, indicating the presence of a negative post-transcriptional feedback loop. CspA bound the 5 UTR of its own mRNA disrupting a hairpin, which was previously described as an RNase III target. Thus, deletion of the cspA 5 UTR abrogated mRNA processing and auto-regulation. We propose that CspA interacts through a U-rich motif, which is located at the RNase III cleavage site, portraying CspA as a putative RNase III-antagonist.
  • PublicationOpen Access
    Relevant role of fibronectin-binding proteins in Staphylococcus aureus biofilm-associated foreign-body infections
    (American Society for Microbiology, 2009) Vergara Irigaray, Marta; Valle Turrillas, Jaione; Merino Barberá, Nekane; Latasa Osta, Cristina; García Martínez, Begoña; Ruiz de los Mozos Aliaga, Igor; Solano Goñi, Cristina; Toledo Arana, Alejandro; Penadés, José R.; Lasa Uzcudun, Íñigo; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua
    Staphylococcus aureus can establish chronic infections on implanted medical devices due to its capacity to form biofilms. Analysis of the factors that assemble cells into a biofilm has revealed the occurrence of strains that produce either a polysaccharide intercellular adhesin/poly-N-acetylglucosamine (PIA/PNAG) exopolysaccharide- or a protein-dependent biofilm. Examination of the influence of matrix nature on the biofilm capacities of embedded bacteria has remained elusive, because a natural strain that readily converts between a polysaccharide- and a protein-based biofilm has not been studied. Here, we have investigated the clinical methicillin (meticillin)-resistant Staphylococcus aureus strain 132, which is able to alternate between a proteinaceous and an exopolysaccharidic biofilm matrix, depending on environmental conditions. Systematic disruption of each member of the LPXTG surface protein family identified fibronectin-binding proteins (FnBPs) as components of a proteinaceous biofilm formed in Trypticase soy broth-glucose, whereas a PIA/PNAG-dependent biofilm was produced under osmotic stress conditions. The induction of FnBP levels due to a spontaneous agr deficiency present in strain 132 and the activation of a LexA-dependent SOS response or FnBP overexpression from a multicopy plasmid enhanced biofilm development, suggesting a direct relationship between the FnBP levels and the strength of the multicellular phenotype. Scanning electron microscopy revealed that cells growing in the FnBP-mediated biofilm formed highly dense aggregates without any detectable extracellular matrix, whereas cells in a PIA/PNAG-dependent biofilm were embedded in an abundant extracellular material. Finally, studies of the contribution of each type of biofilm matrix to subcutaneous catheter colonization revealed that an FnBP mutant displayed a significantly lower capacity to develop biofilm on implanted catheters than the isogenic PIA/PNAG-deficient mutant.
  • PublicationOpen Access
    Coordinated cyclic-di-GMP repression of salmonella motility through YcgR and cellulose
    (American Society for Microbiology, 2013) Zorraquino Salvo, Violeta; García Martínez, Begoña; Latasa Osta, Cristina; Echeverz Sarasúa, Maite; Toledo Arana, Alejandro; Valle Turrillas, Jaione; Lasa Uzcudun, Íñigo; Solano Goñi, Cristina; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: 1312/2010
    Cyclic di-GMP (c-di-GMP) is a secondary messenger that controls a variety of cellular processes, including the switch between a biofilm and a planktonic bacterial lifestyle. This nucleotide binds to cellular effectors in order to exert its regulatory functions. In Salmonella, two proteins, BcsA and YcgR, both of them containing a c-di-GMP binding PilZ domain, are the only known c-di-GMP receptors. BcsA, upon c-di-GMP binding, synthesizes cellulose, the main exopolysaccharide of the biofilm matrix. YcgR is dedicated to c-di-GMP-dependent inhibition of motility through its interaction with flagellar motor proteins. However, previous evidences indicate that in the absence of YcgR, there is still an additional element that mediates motility impairment under high c-di-GMP levels. Here we have uncovered that cellulose per se is the factor that further promotes inhibition of bacterial motility once high c-di-GMP contents drive the activation of a sessile lifestyle. Inactivation of different genes of the bcsABZC operon, mutation of the conserved residues in the RxxxR motif of the BcsA PilZ domain, or degradation of the cellulose produced by BcsA rescued the motility defect of ΔycgR strains in which high c-di-GMP levels were reached through the overexpression of diguanylate cyclases. High c-di-GMP levels provoked cellulose accumulation around cells that impeded flagellar rotation, probably by means of steric hindrance, without affecting flagellum gene expression, exportation, or assembly. Our results highlight the relevance of cellulose in Salmonella lifestyle switching as an architectural element that is both essential for biofilm development and required, in collaboration with YcgR, for complete motility inhibition.
  • PublicationOpen Access
    Bap, a biofilm matrix protein of Staphylococcus aureus prevents cellular internalization through binding to GP96 host receptor
    (Public Library of Science, 2012) Valle Turrillas, Jaione; Latasa Osta, Cristina; Gil Puig, Carmen; Toledo Arana, Alejandro; Solano Goñi, Cristina; Penadés, José R.; Lasa Uzcudun, Íñigo; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    The biofilm matrix, composed of exopolysaccharides, proteins, nucleic acids and lipids, plays a well-known role as a defence structure, protecting bacteria from the host immune system and antimicrobial therapy. However, little is known about its responsibility in the interaction of biofilm cells with host tissues. Staphylococcus aureus, a leading cause of biofilmassociated chronic infections, is able to develop a biofilm built on a proteinaceous Bap-mediated matrix. Here, we used the Bap protein as a model to investigate the role that components of the biofilm matrix play in the interaction of S. aureus with host cells. The results show that Bap promotes the adhesion but prevents the entry of S. aureus into epithelial cells. A broad analysis of potential interaction partners for Bap using ligand overlayer immunoblotting, immunoprecipitation with purified Bap and pull down with intact bacteria, identified a direct binding between Bap and Gp96/GRP94/Hsp90 protein. The interaction of Bap with Gp96 provokes a significant reduction in the capacity of S. aureus to invade epithelial cells by interfering with the fibronectin binding protein invasion pathway. Consistent with these results, Bap deficient bacteria displayed an enhanced capacity to invade mammary gland epithelial cells in a lactating mice mastitis model. Our observations begin to elucidate the mechanisms by which components of the biofilm matrix can facilitate the colonization of host tissues and the establishment of persistent infections.
  • PublicationOpen Access
    Protein A-mediated multicellular behavior in Staphylococcus aureus
    (American Society for Microbiology, 2008) Merino Barberá, Nekane; Toledo Arana, Alejandro; Vergara Irigaray, Marta; Valle Turrillas, Jaione; Solano Goñi, Cristina; Calvo, Enrique; Lopez, Juan Antonio; Foster, Timothy J.; Penadés, José R.; Lasa Uzcudun, Íñigo; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    The capacity of Staphylococcus aureus to form biofilms on host tissues and implanted medical devices is one of the major virulence traits underlying persistent and chronic infections. The matrix in which S. aureus cells are encased in a biofilm often consists of the polysaccharide intercellular adhesin (PIA) or poly-N-acetyl glucosamine (PNAG). However, surface proteins capable of promoting biofilm development in the absence of PIA/PNAG exopolysaccharide have been described. Here, we used two-dimensional nano-liquid chromatography and mass spectrometry to investigate the composition of a proteinaceous biofilm matrix and identified protein A (spa) as an essential component of the biofilm; protein A induced bacterial aggregation in liquid medium and biofilm formation under standing and flow conditions. Exogenous addition of synthetic protein A or supernatants containing secreted protein A to growth media induced biofilm development, indicating that protein A can promote biofilm development without being covalently anchored to the cell wall. Protein A-mediated biofilm formation was completely inhibited in a dose-dependent manner by addition of serum, purified immunoglobulin G, or anti-protein A-specific antibodies. A murine model of subcutaneous catheter infection unveiled a significant role for protein A in the development of biofilm-associated infections, as the amount of protein A-deficient bacteria recovered from the catheter was significantly lower than that of wild-type bacteria when both strains were used to coinfect the implanted medical device. Our results suggest a novel role for protein A complementary to its known capacity to interact with multiple immunologically important eukaryotic receptors.
  • PublicationOpen Access
    Evaluation of a Salmonella strain lacking the secondary messenger c-di-GMP and RpoS as a live oral vaccine
    (Public Library of Science, 2016) Latasa Osta, Cristina; Echeverz Sarasúa, Maite; García Ona, Enrique; Burgui Erice, Saioa; Casares, Noelia; Hervás Stubbs, Sandra; Lasarte, Juan José; Lasa Uzcudun, Íñigo; Solano Goñi, Cristina; García Martínez, Begoña; Gil Puig, Carmen; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIM 13329.RI1
    Salmonellosis is one of the most important bacterial zoonotic diseases transmitted through the consumption of contaminated food, with chicken and pig related products being key reservoirs of infection. Although numerous studies on animal vaccination have been performed in order to reduce Salmonella prevalence, there is still a need for an ideal vaccine. Here, with the aim of constructing a novel live attenuated Salmonella vaccine candidate, we firstly analyzed the impact of the absence of cyclic-di-GMP (c-di-GMP) in Salmonella virulence. Cdi-GMP is an intracellular second messenger that controls a wide range of bacterial processes, including biofilm formation and synthesis of virulence factors, and also modulates the host innate immune response. Our results showed that a Salmonella multiple mutant in the twelve genes encoding diguanylate cyclase proteins that, as a consequence, cannot synthesize c-di-GMP, presents a moderate attenuation in a systemic murine infection model. An additional mutation of the rpoS gene resulted in a synergic attenuating effect that led to a highly attenuated strain, referred to as ΔXIII, immunogenic enough to protect mice against a lethal oral challenge of a S. Typhimurium virulent strain. ΔXIII immunogenicity relied on activation of both antibody and cell mediated immune responses characterized by the production of opsonizing antibodies and the induction of significant levels of IFN-γ, TNF- α, IL-2, IL-17 and IL-10. ΔXIII was unable to form a biofilm and did not survive under desiccation conditions, indicating that it could be easily eliminated from the environment. Moreover, ΔXIII shows DIVA features that allow differentiation of infected and vaccinated animals. Altogether, these results show ΔXIII as a safe and effective live DIVA vaccine
  • PublicationOpen Access
    Bap, a Staphylococcus aureus surface protein involved in biofilm formation
    (American Society for Microbiology, 2001) Cucarella, Carme; Solano Goñi, Cristina; Valle Turrillas, Jaione; Amorena Zabalza, Beatriz; Lasa Uzcudun, Íñigo; Penadés, José R.; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua
    Identification of new genes involved in biofilm formation is needed to understand the molecular basis of strain variation and the pathogenic mechanisms implicated in chronic staphylococcal infections. A biofilm-producing Staphylococcus aureus isolate was used to generate biofilm-negative transposon (Tn917) insertion mutants. Two mutants were found with a significant decrease in attachment to inert surfaces (early adherence), intercellular adhesion, and biofilm formation. The transposon was inserted at the same locus in both mutants. This locus (bap [for biofilm associated protein]) encodes a novel cell wall associated protein of 2,276 amino acids (Bap), which shows global organizational similarities to surface proteins of gram-negative (Pseudomonas aeruginosa andSalmonella enterica serovar Typhi) and gram-positive (Enteroccocus faecalis) microorganisms. Bap's core region represents 52% of the protein and consists of 13 successive nearly identical repeats, each containing 86 amino acids. bap was present in a small fraction of bovine mastitis isolates (5% of the 350S. aureus isolates tested), but it was absent from the 75 clinical human S. aureus isolates analyzed. All staphylococcal isolates harboring bap were highly adherent and strong biofilm producers. In a mouse infection modelbap was involved in pathogenesis, causing a persistent infection.
  • PublicationOpen Access
    A systematic evaluation of the two-component systems network reveals that ArlRS is a key regulator of catheter colonization by Staphylococcus aureus
    (Frontiers Media, 2018) Burgui Erice, Saioa; Gil Puig, Carmen; Solano Goñi, Cristina; Lasa Uzcudun, Íñigo; Valle Turrillas, Jaione; Ciencias de la Salud; Osasun Zientziak
    Two-component systems (TCS) are modular signal transduction pathways that allow cells to adapt to prevailing environmental conditions by modifying cellular physiology. Staphylococcus aureus has 16 TCSs to adapt to the diverse microenvironments encountered during its life cycle, including host tissues and implanted medical devices. S. aureus is particularly prone to cause infections associated to medical devices, whose surfaces coated by serum proteins constitute a particular environment. Identification of the TCSs involved in the adaptation of S. aureus to colonize and survive on the surface of implanted devices remains largely unexplored. Here, using an in vivo catheter infection model and a collection of mutants in each non-essential TCS of S. aureus, we investigated the requirement of each TCS for colonizing the implanted catheter. Among the 15 mutants in non-essential TCSs, the arl mutant exhibited the strongest deficiency in the capacity to colonize implanted catheters. Moreover, the arl mutant was the only one presenting a major deficit in PNAG production, the main exopolysaccharide of the S. aureus biofilm matrix whose synthesis is mediated by the icaADBC locus. Regulation of PNAG synthesis by ArlRS occurred through repression of IcaR, a transcriptional repressor of icaADBC operon expression. Deficiency in catheter colonization was restored when the arl mutant was complemented with the icaADBC operon. MgrA, a global transcriptional regulator downstream ArlRS that accounts for a large part of the arlRS regulon, was unable to restore PNAG expression and catheter colonization deficiency of the arlRS mutant. These findings indicate that ArlRS is the key TCS to biofilm formation on the surface of implanted catheters and that activation of PNAG exopolysaccharide production is, among the many traits controlled by the ArlRS system, a major contributor to catheter colonization.
  • PublicationOpen Access
    Biofilm dispersion and quorum sensing
    (Elsevier, 2014) Solano Goñi, Cristina; Echeverz Sarasúa, Maite; Lasa Uzcudun, Íñigo; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIM13329.RI1
    Biofilm development and quorum sensing are closely interconnected processes. Biofilm formation is a cooperative group behaviour that involves bacterial populations living embedded in a self produced extracellular matrix. Quorum sensing (QS) is a cell-cell communication mechanism that synchronizes gene expression in response to population cell density. Intuitively, it would appear that QS might coordinate the switch to a biofilm lifestyle when the population density reaches a threshold level. However, compelling evidence obtained in different bacterial species coincides in that activation of QS occurs in the formed biofilm and activates the maturation and disassembly of the biofilm in a coordinate manner. The aim of this review is to illustrate, using four bacterial pathogens as examples, the emergent concept that QS activates the biofilm dispersion process.
  • PublicationOpen Access
    Etnobotánica de wirikuta: uso de recursos vegetales silvestres en el desierto de San Luis Potosí, México
    (Asociación Etnobiológica Mexicana A.C., 2018) Solano Goñi, Cristina; Blancas, José; Ciencias de la Salud; Osasun Zientziak
    La presente investigación se llevó a cabo en el ejido Las Margaritas ubicado en el municipio de Catorce, dentro de la Reserva Ecológica Natural y Cultural de Wirikuta (RW), San Luis Potosí, México. Esta se localiza en la región sur del Desierto Chihuahuense, es un lugar fundamental dentro de los sitios sagrados de la cosmovisión wixárika (huichol) y en consecuencia un lugar de gran proyección mediática nacional e internacional, particularmente en los últimos años. En este trabajo con enfoque etnobotánico se describe el conocimiento, uso y vínculo de la población del ejido Las Margaritas con la flora silvestre de la región, a través de un listado etnobotánico que incluyó 59 especies agrupadas en 27 familias botánicas el cual se obtuvo como resultado de entrevistas semiestructuradas a informantes clave. Se registraron nueve categorías de uso: alimento, combustible, construcción, forraje, medicinal, ornato, fibras, utensilios y soponífera. Se utiliza el concepto de vigencia como indicador del estado de abandono o conservación del conocimiento tradicional. Las categorías de plantas usadas como construcción y combustible resultaron tener una vigencia cercana al 100%, ya que la totalidad de los entrevistados las usa de manera cotidiana. Por el contrario, la gran mayoría de las registradas como alimento, medicina y forraje han sido sustituidas o se usan de manera ocasional. Se consideran también los factores que podrían estar incidiendo sobre el uso de la flora silvestre. Se concluye que el análisis de la vigencia de uso de las categorías aporta información para el desarrollo de estrategias de promoción, difusión y resistencia del conocimiento local.