Durán Lázaro, María
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Durán Lázaro
First Name
María
person.page.departamento
Producción Agraria
person.page.instituteName
IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Restorative pyric herbivory practices in shrub-encroached grasslands enhance nutrient resource availability and spatial heterogeneity(Elsevier, 2024-05-31) Canals Tresserras, Rosa María; Múgica Azpilicueta, Leire; Durán Lázaro, María; San Emeterio Garciandía, Leticia; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute on Innovation and Sustainable Development in Food Chain - ISFOODPyric herbivory (PH), the combination of prescribed burnings and targeted herbivory, is a promising tool for landscape restoration that emulates historical disturbance regimes. Nitrogen (N) and phosphorus (P) are crucial nutrients for plant growth and although several studies have analysed the single effects of fire or grazers in their availability, the combined effect of both disturbances in the soil nutrient budgets have been rarely considered. This research was planned to analyse the 2-year impact of PH restoration practices on the availability of N and P in two Ulex gallii-encroached grasslands in the Pyrenees. We monitored available forms of N and P for two years using periodic replacements of ion exchange resins to test the hypothesis that mid-term effect of targeted grazing was more relevant than short-term effect of burning. Additionally, we investigated the role of temperature and precipitation on nutrients accumulation and compared its significance to management factors. Burning transformed vegetation and litter into a spatially heterogeneous layer of ash and charred material, which resulted in a variable availability of N and P at the rhizosphere level. After two periods of PH, nutrient availability was higher in soils from grazed plots compared to ungrazed, and the impacts of early burns were scarcely discernible. Nitrate was found to be the most rainfall-dependent nutrient, and grazing also affected its spatial distribution. Our results suggest that the heterogeneous nutrient enrichment enhanced by PH is important for promoting the establishment of a diverse pool of plant species, including both N2-fixing and non-fixing species. In these rainy areas, the use of burnings alone, without grazing, may perpetuate the dynamics of N2-fixing shrub encroachment.Publication Open Access Soil C/N ratios cause opposing effects in forests compared to grasslands on decomposition rates and stabilization factors in southern European ecosystems(Elsevier, 2023) Blanco Vaca, Juan Antonio; Durán Lázaro, María; Luquin, Josu; San Emeterio Garciandía, Leticia; Yeste Yeste, Antonio; Canals Tresserras, Rosa María; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaSoils store an important amount of carbon (C), mostly in the form of organic matter in different decomposing stages. Hence, understanding the factors that rule the rates at which decomposed organic matter is incorporated into the soil is paramount to better understand how C stocks will vary under changing atmospheric and land use conditions. We studied the interactions between vegetation cover, climate and soil factors using the Tea Bag Index in 16 different ecosystems (eight forests, eight grasslands) along two contrasting gradients in the Spanish province of Navarre (SW Europe). Such arrangement encompassed a range of four climate types, elevations from 80 to 1420 m.a.s.l., and precipitation (P) from 427 to 1881 mm year–1. After incubating tea bags during the spring of 2017, we identified strong interactions between vegetation cover type, soil C/N and precipitation affecting decomposition rates and stabilization factors. In both forests and grasslands, increasing precipitation increased decomposition rates (k) but also the litter stabilization factor (S). In forests, however, increasing the soil C/N ratio raised decomposition rates and the litter stabilization factor, while in grasslands higher C/N ratios caused the opposite effects. In addition, soil pH and N also affected decomposition rates positively, but for these factors no differences between ecosystem types were found. Our results demonstrate that soil C flows are altered by complex site-dependent and site-independent environmental factors, and that increased ecosystem lignification will significantly change C flows, likely increasing decomposition rates in the short term but also increasing the inhibiting factors that stabilize labile litter compounds.Publication Open Access Pyric herbivory decreases soil denitrification despite increased nitrate availability in a temperate grassland(Elsevier, 2024-07-04) Múgica Azpilicueta, Leire; Le Roux, Xavier; San Emeterio Garciandía, Leticia; Cantarel, Amélie; Durán Lázaro, María; Gervaix, Jonathan; Creuzé des Châtelliers, Charline; Canals Tresserras, Rosa María; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute on Innovation and Sustainable Development in Food Chain - ISFOODPyric herbivory, the combination of controlled burning and targeted grazing, is an effective strategy for restoring abandoned, shrub-encroached rangelands to open ecosystems. This practice may impact soil nitrogen pools by altering soil nitrification and denitrification rates, and may lead to an increase of nitrogen losses through nitrate leaching and N-gas emissions. This research, located in the south-western Pyrenees, investigated the effects of pyric herbivory on soil nitrification and denitrification potentials and mineral nitrogen content in a gorse-encroached temperate rangeland six months after the burning was implemented. The study included three treatments: high-severity burning plus grazing, low-severity burning plus grazing, and unburned and ungrazed areas (control). We measured soil nitrification and denitrification potentials (net and gross), the limitation of denitrifiers by nitrogen or organic carbon, and the abundance of nitrite- and nitrous oxide-reducing bacteria. Additional soil and vegetation data complemented these measurements. Results showed that pyric herbivory did not significantly affect nitrification potential, which was low and highly variable. However, it decreased gross denitrification potential and nitrous oxide reduction to dinitrogen in high-severely burned areas compared to the control. Denitrification rates directly correlated with microbial biomass nitrogen, soil organic carbon, soil water content and abundance of nirS-harbouring bacteria. Contrary to the expected, soil nitrate availability did not directly influence denitrification despite being highest in burned areas. Overall, the study suggests that pyric herbivory does not significantly affect mid-term nitrification rates in temperate open ecosystems, but may decrease denitrification rates in intensely burned areas. These findings highlight the importance of assessing the potential impacts of land management practices, such as pyric herbivory, on soil nutrient cycling and ecosystem functioning.