Person:
Glaría Ezquer, Idoia

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Glaría Ezquer

First Name

Idoia

person.page.departamento

Producción Agraria

ORCID

person.page.upna

6796

Name

Search Results

Now showing 1 - 9 of 9
  • PublicationOpen Access
    Lentinula edodes β-glucan enriched diet induces pro- and anti-inflammatory macrophages in rabbit
    (Taylor & Francis, 2017) Crespo, Helena; Guillén, Hugo; Pablo Maiso, Lorena de; Gómez Arrebola, Carmen; Rodríguez, Gregorio; Glaría Ezquer, Idoia; Andrés Cara, Damián de; Reina Arias, Ramsés; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    β-glucans exhibited in cell walls of several pathogens as bacteria or fungi are sensed by pathogen recognition receptors such as scavenger receptors present in antigen presenting cells, i.e., macrophages. β-glucans obtained from Shiitake mushrooms were chemically characterized. A β-glucan supplemented diet was assayed for 30 days in rabbits aiming to characterize the immune response elicited in blood-derived macrophages. M1 and M2 profiles of macrophage differentiation were confirmed in rabbits by in vitro stimulation with IFN-γ and IL-4 and marker quantification of each differentiation pathway. Blood derived macrophages from rabbits administered in vivo with the β-glucan supplemented diet showed higher IL-4, IFN-γ and RAGE together with lower IL-10 relative expression, indicative of an ongoing immune response. Differences in IL-1β, IL-13 and IL-4 expression were also found in rabbit sera by ELISA suggesting further stimulation of the adaptive response. Recent challenges in the rabbit industry include the search of diet supplements able to elicit an immune stimulation with particular interest in facing pathogens such as viruses or bacteria. β–glucans from fungi may contribute to maintain an immune steady state favouring protection and thus reducing antibiotic treatment.
  • PublicationOpen Access
    Ovine TRIM5α can restrict visna/maedi virus
    (American Society for Microbiology, 2012) Jauregui, Paula; Crespo, Helena; Glaría Ezquer, Idoia; Luján, Lluís; Contreras, A.; Rosati, Sergio; Andrés Cara, Damián de; Amorena Zabalza, Beatriz; Towers, G. J.; Reina Arias, Ramsés; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua, IIQ14064.RI1
    The restrictive properties of tripartite motif-containing 5 alpha (TRIM5α) from small ruminant species have not been explored. Here, we identify highly similar TRIM5α sequences in sheep and goats. Cells transduced with ovine TRIM5α effectively restricted the lentivirus visna/maedi virus DNA synthesis. Proteasome inhibition in cells transduced with ovine TRIM5α restored restricted viral DNA synthesis, suggesting a conserved mechanism of restriction. Identification of TRIM5α active molecular species may open new prophylactic strategies against lentiviral infections.
  • PublicationOpen Access
    Diagnosing infection with small ruminant lentiviruses of genotypes A and B by combining synthetic peptides in ELISA
    (Elsevier, 2015) Sanjosé, Leticia; Crespo, Helena; Glaría Ezquer, Idoia; Andrés Cara, Damián de; Reina Arias, Ramsés; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The major challenges in diagnosing small ruminant lentivirus (SRLV) infection include early detection and genotyping of strains of epidemiological interest. A longitudinal study was carried out in Rasa Aragonesa sheep experimentally infected with viral strains of genotypes A or B from Spanish neurological and arthritic SRLV outbreaks, respectively. Sera were tested with two commercial ELISAs, three based on specific peptides and a novel combined peptide ELISA. Three different PCR assays were used to further assess infection status. The kinetics of anti-viral antibody responses were variable, with early diagnosis dependent on the type of ELISA used. Peptide epitopes of SRLV genotypes A and B combined in the same ELISA well enhanced the overall detection rate, whereas single peptides were useful for genotyping the infecting strain (A vs. B). The results of the study suggest that a combined peptide ELISA can be used for serological diagnosis of SRLV infection, with single peptide ELISAs useful for subsequent serotyping.
  • PublicationOpen Access
    Post-entry blockade of small ruminant lentiviruses by wild ruminants
    (BioMed Central, 2016) Sanjosé, Leticia; Crespo, Helena; Blatti-Cardinaux, Laure; Glaría Ezquer, Idoia; Martínez Carrasco, Carlos; Berriatua, Eduardo; Amorena Zabalza, Beatriz; Andrés Cara, Damián de; Bertoni, Giuseppe; Reina Arias, Ramsés; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIQ010449.RI1; Gobierno de Navarra / Nafarroako Gobernua: IIQ14064.RI1; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Small ruminant lentivirus (SRLV) infection causes losses in the small ruminant industry due to reduced animal production and increased replacement rates. Infection of wild ruminants in close contact with infected domestic animals has been proposed to play a role in SRLV epidemiology, but studies are limited and mostly involve hybrids between wild and domestic animals. In this study, SRLV seropositive red deer, roe deer and mouflon were detected through modified ELISA tests, but virus was not successfully amplified using a set of different PCRs. Apparent restriction of SRLV infection in cervids was not related to the presence of neutralizing antibodies. In vitro cultured skin fibroblastic cells from red deer and fallow deer were permissive to the SRLV entry and integration, but produced low quantities of virus. SRLV got rapidly adapted in vitro to blood-derived macrophages and skin fibroblastic cells from red deer but not from fallow deer. Thus, although direct detection of virus was not successfully achieved in vivo, these findings show the potential susceptibility of wild ruminants to SRLV infection in the case of red deer and, on the other hand, an in vivo SRLV restriction in fallow deer. Altogether these results may highlight the importance of surveilling and controlling SRLV infection in domestic as well as in wild ruminants sharing pasture areas, and may provide new natural tools to control SRLV spread in sheep and goats.
  • PublicationOpen Access
    Characterization of ovine A3Z1 restriction properties against small ruminant lentiviruses (SRLVs)
    (MDPI, 2017) Pablo Maiso, Lorena de; Glaría Ezquer, Idoia; Crespo, Helena; Nistal Villán, Estanislao; Andrésdóttir, Valgerdur; Andrés Cara, Damián de; Amorena Zabalza, Beatriz; Reina Arias, Ramsés; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Intrinsic factors of the innate immune system include the apolipoprotein B editing enzyme catalytic polypeptide-like 3 (APOBEC3) protein family. APOBEC3 inhibits replication of different virus families by cytosine deamination of viral DNA and a not fully characterized cytosine deamination-independent mechanism. Sheep are susceptible to small ruminant lentivirus (SRLVs) infection and contain three APOBEC3 genes encoding four proteins (A3Z1, Z2, Z3 and Z2-Z3) with yet not deeply described antiviral properties. Using sheep blood monocytes and in vitro-derived macrophages, we found that A3Z1 expression is associated with lower viral replication in this cellular type. A3Z1 transcripts may also contain spliced variants (A3Z1Tr) lacking the cytidine deaminase motif. A3Z1 exogenous expression in fully permissive fibroblast-like cells restricted SRLVs infection while A3Z1Tr allowed infection. A3Z1Tr was induced after SRLVs infection or stimulation of blood-derived macrophages with interferon gamma (IFN- ). Interaction between truncated isoform and native A3Z1 protein was detected as well as incorporation of both proteins into virions. A3Z1 and A3Z1Tr interacted with SRLVs Vif, but this interaction was not associated with degradative properties. Similar A3Z1 truncated isoforms were also present in human and monkey cells suggesting a conserved alternative splicing regulation in primates. A3Z1-mediated retroviral restriction could be constrained by different means, including gene expression and specific alternative splicing regulation, leading to truncated protein isoforms lacking a cytidine-deaminase motif.
  • PublicationOpen Access
    Identification of the ovine mannose receptor and its possible role in Visna/Maedi virus infection
    (BioMed Central, 2011) Crespo, Helena; Reina Arias, Ramsés; Glaría Ezquer, Idoia; Ramírez, Hugo; Andrés, Ximena de; Jauregui, Paula; Luján, Lluís; Martínez Pomares, Luisa; Amorena Zabalza, Beatriz; Andrés Cara, Damián de; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    This study aims to characterize the mannose receptor (MR) gene in sheep and its role in ovine visna/maedi virus (VMV) infection. The deduced amino acid sequence of ovine MR was compatible with a transmembrane protein having a cysteine-rich ricin-type amino-terminal region, a fibronectin type II repeat, eight tandem C-type lectin carbohydrate-recognition domains (CRD), a transmembrane region, and a cytoplasmic carboxy-terminal tail. The ovine and bovine MR sequences were closer to each other compared to human or swine MR. Concanavalin A (ConA) inhibited VMV productive infection, which was restored by mannan totally in ovine skin fibroblasts (OSF) and partially in blood monocyte-derived macrophages (BMDM), suggesting the involvement of mannosylated residues of the VMV ENV protein in the process. ConA impaired also syncytium formation in OSF transfected with an ENV-encoding pN3-plasmid. MR transcripts were found in two common SRLV targets, BMDM and synovial membrane (GSM) cells, but not in OSF. Viral infection of BMDM and especially GSM cells was inhibited by mannan, strongly suggesting that in these cells the MR is an important route of infection involving VMV Env mannosylated residues. Thus, at least three patterns of viral entry into SRLV-target cells can be proposed, involving mainly MR in GSM cells (target in SRLV-induced arthritis), MR in addition to an alternative route in BMDM (target in SRLV infections), and an alternative route excluding MR in OSF (target in cell culture). Different routes of SRLV infection may thus coexist related to the involvement of MR differential expression.
  • PublicationOpen Access
    Mannose receptor may be involved in small ruminant lentivirus pathogenesis
    (BioMed Central, 2012) Crespo, Helena; Jauregui, Paula; Glaría Ezquer, Idoia; Sanjosé, Leticia; Polledo, Laura; García Marín, Juan F.; Luján, Lluís; Andrés Cara, Damián de; Amorena Zabalza, Beatriz; Reina Arias, Ramsés; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIQ14064.RI1; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Thirty-one sheep naturally infected with small ruminant lentiviruses (SRLV) of known genotype (A or B), and clinically affected with neurological disease, pneumonia or arthritis were used to analyse mannose receptor (MR) expression (transcript levels) and proviral load in virus target tissues (lung, mammary gland, CNS and carpal joints). Control sheep were SRLV-seropositive asymptomatic (n = 3), seronegative (n = 3) or with chronic listeriosis, pseudotuberculosis or parasitic cysts (n = 1 in each case). MR expression and proviral load increased with the severity of lesions in most analyzed organs of the SRLV infected sheep and was detected in the affected tissue involved in the corresponding clinical disease (CNS, lung and carpal joint in neurological disease, pneumonia and arthritis animal groups, respectively). The increased MR expression appeared to be SRLV specific and may have a role in lentiviral pathogenesis.
  • PublicationOpen Access
    Small ruminant macrophage polarization may play a pivotal role on lentiviral infection
    (BioMed Central, 2013) Crespo, Helena; Bertolotti, Luigi; Juganaru, Magda; Glaría Ezquer, Idoia; Andrés Cara, Damián de; Amorena Zabalza, Beatriz; Rosati, Sergio; Reina Arias, Ramsés; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIQ14064.RI1; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Small ruminant lentiviruses (SRLV) infect the monocyte/macrophage lineage inducing a long-lasting infection affecting body condition, production and welfare of sheep and goats all over the world. Macrophages play a pivotal role on the host's innate and adaptative immune responses against parasites by becoming differentially activated. Macrophage heterogeneity can tentatively be classified into classically differentiated macrophages (M1) through stimulation with IFN-gamma displaying an inflammatory profile, or can be alternatively differentiated by stimulation with IL-4/IL-13 into M2 macrophages with homeostatic functions. Since infection by SRLV can modulate macrophage functions we explored here whether ovine and caprine macrophages can be segregated into M1 and M2 populations and whether this differential polarization represents differential susceptibility to SRLV infection. We found that like in human and mouse systems, ovine and caprine macrophages can be differentiated with particular stimuli into M1/M2 subpopulations displaying specific markers. In addition, small ruminant macrophages are plastic since M1 differentiated macrophages can express M2 markers when the stimulus changes from IFN-gamma to IL-4. SRLV replication was restricted in M1 macrophages and increased in M2 differentiated macrophages respectively according to viral production. Identification of the infection pathways in macrophage populations may provide new targets for eliciting appropriate immune responses against SRLV infection.
  • PublicationOpen Access
    Study of compartmentalization in the visna clinical form of small ruminant lentivirus infection in sheep
    (BioMed Central, 2012) Ramírez, Hugo; Reina Arias, Ramsés; Bertolotti, Luigi; Cenoz, Amaia; Hernández, Mirna Margarita; San Román Aberasturi, Beatriz; Glaría Ezquer, Idoia; Andrés, Ximena de; Crespo, Helena; Jauregui, Paula; Benavides, Julio; Polledo, Laura; Pérez, Valentín; García Marín, Juan F.; Rosati, Sergio; Amorena Zabalza, Beatriz; Andrés Cara, Damián de; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIQ010449.RI1; Gobierno de Navarra / Nafarroako Gobernua: IIQ14064.RI1; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Background: A central nervous system (CNS) disease outbreak caused by small ruminant lentiviruses (SRLV) has triggered interest in Spain due to the rapid onset of clinical signs and relevant production losses. In a previous study on this outbreak, the role of LTR in tropism was unclear and env encoded sequences, likely involved in tropism, were not investigated. This study aimed to analyze heterogeneity of SRLV Env regions - TM amino terminal and SU V4, C4 and V5 segments - in order to assess virus compartmentalization in CNS. Results: Eight Visna (neurologically) affected sheep of the outbreak were used. Of the 350 clones obtained after PCR amplification, 142 corresponded to CNS samples (spinal cord and choroid plexus) and the remaining to mammary gland, blood cells, bronchoalveolar lavage cells and/or lung. The diversity of the env sequences from CNS was 11.1-16.1% between animals and 0.35-11.6% within each animal, except in one animal presenting two sequence types (30% diversity) in the CNS (one grouping with those of the outbreak), indicative of CNS virus sequence heterogeneity. Outbreak sequences were of genotype A, clustering per animal and compartmentalizing in the animal tissues. No CNS specific signature patterns were found. Conclusions: Bayesian approach inferences suggested that proviruses from broncoalveolar lavage cells and peripheral blood mononuclear cells represented the common ancestors (infecting viruses) in the animal and that neuroinvasion in the outbreak involved microevolution after initial infection with an A-type strain. This study demonstrates virus compartmentalization in the CNS and other body tissues in sheep presenting the neurological form of SRLV infection.