Glaría Ezquer, Idoia

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Glaría Ezquer

First Name

Idoia

person.page.departamento

Producción Agraria

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Mannose receptor may be involved in small ruminant lentivirus pathogenesis
    (BioMed Central, 2012) Crespo Otano, Helena; Jauregui, Paula; Glaría Ezquer, Idoia; Sanjosé, Leticia; Polledo, Laura; García Marín, Juan F.; Luján, Lluís; Andrés Cara, Damián de; Amorena Zabalza, Beatriz; Reina Arias, Ramsés; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIQ14064.RI1; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Thirty-one sheep naturally infected with small ruminant lentiviruses (SRLV) of known genotype (A or B), and clinically affected with neurological disease, pneumonia or arthritis were used to analyse mannose receptor (MR) expression (transcript levels) and proviral load in virus target tissues (lung, mammary gland, CNS and carpal joints). Control sheep were SRLV-seropositive asymptomatic (n = 3), seronegative (n = 3) or with chronic listeriosis, pseudotuberculosis or parasitic cysts (n = 1 in each case). MR expression and proviral load increased with the severity of lesions in most analyzed organs of the SRLV infected sheep and was detected in the affected tissue involved in the corresponding clinical disease (CNS, lung and carpal joint in neurological disease, pneumonia and arthritis animal groups, respectively). The increased MR expression appeared to be SRLV specific and may have a role in lentiviral pathogenesis.
  • PublicationOpen Access
    Small ruminant macrophage polarization may play a pivotal role on lentiviral infection
    (BioMed Central, 2013) Crespo Otano, Helena; Bertolotti, Luigi; Juganaru, Magda; Glaría Ezquer, Idoia; Andrés Cara, Damián de; Amorena Zabalza, Beatriz; Rosati, Sergio; Reina Arias, Ramsés; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIQ14064.RI1; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Small ruminant lentiviruses (SRLV) infect the monocyte/macrophage lineage inducing a long-lasting infection affecting body condition, production and welfare of sheep and goats all over the world. Macrophages play a pivotal role on the host's innate and adaptative immune responses against parasites by becoming differentially activated. Macrophage heterogeneity can tentatively be classified into classically differentiated macrophages (M1) through stimulation with IFN-gamma displaying an inflammatory profile, or can be alternatively differentiated by stimulation with IL-4/IL-13 into M2 macrophages with homeostatic functions. Since infection by SRLV can modulate macrophage functions we explored here whether ovine and caprine macrophages can be segregated into M1 and M2 populations and whether this differential polarization represents differential susceptibility to SRLV infection. We found that like in human and mouse systems, ovine and caprine macrophages can be differentiated with particular stimuli into M1/M2 subpopulations displaying specific markers. In addition, small ruminant macrophages are plastic since M1 differentiated macrophages can express M2 markers when the stimulus changes from IFN-gamma to IL-4. SRLV replication was restricted in M1 macrophages and increased in M2 differentiated macrophages respectively according to viral production. Identification of the infection pathways in macrophage populations may provide new targets for eliciting appropriate immune responses against SRLV infection.