Fuertes Bonel, Juan Pablo

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Fuertes Bonel

First Name

Juan Pablo

person.page.departamento

Ingeniería

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Design and mechanical properties analysis of AA5083 ultrafine grained cams
    (MDPI, 2017) Salcedo Pérez, Daniel; Luis Pérez, Carmelo Javier; Luri Irigoyen, Rodrigo; Puertas Arbizu, Ignacio; León Iriarte, Javier; Fuertes Bonel, Juan Pablo; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    This present research work deals with the development of ultrafine grained cams obtained from previously ECAP (Equal Channel Angular Pressing)-processed material and manufactured by isothermal forging. The design and the manufacturing of the dies required for the isothermal forging of the cams are shown. Optimization techniques based on the combination of design of experiments, finite element and finite volume simulations are employed to develop the dies. A comparison is made between the mechanical properties obtained with the cams manufactured from material with no previous deformation and with those from previously SPD (Severe Plastic Deformation)-processed material. In addition, a comparative study between the experimental results and those obtained from the simulations is carried out. It has been demonstrated that it is possible to obtain ultrafine grained cams with an increase of 10.3% in the microhardness mean value as compared to that obtained from material with no previous deformation.
  • PublicationOpen Access
    Determination of the most influential factors on the quality of resin gears manufacturing
    (MDPI, 2025-08-12) Echeverria Lazcano, Angel María; Martín Antunes, Miguel Ángel; Villanueva Roldán, Pedro; Fuertes Bonel, Juan Pablo; Marcelino Sádaba, Sara; Ingeniería; Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA2023-11383
    The manufacture of industrial parts using silicone molds is becoming more frequent due to their versatility, durability, and precision, particularly in the production of complex components. One specific application is the manufacture of gears, which play a fundamental role in high-performance mechanical systems, where geometric accuracy is essential. Gears produced from resins offer several advantages such as efficient tribological performance, load resistance, noise reduction, and non-magnetic properties. The main goal of this paper is to determine the main factors affecting the final quality of resin gears by analyzing two principal gear quality parameters: teeth profile (ffα) and helix deviation (ffβ). This work includes a global analysis of all contributing factors influencing the final quality of gears manufactured. One of the main conclusions obtained is that gear quality depends on a combination of factors, such as mold properties, choice of resin, the manufacturing process, and the quality of the original model. As a result, two regression equations have been developed, relating all influencing factors to the two gear quality parameters (ffα and ffβ). Different response surfaces have been obtained, enabling the definition of the required quality level of the model to achieve reproductions with certain ffα and ffβ values suitable for the intended application conditions.