Person: Pérez de Landazábal Berganzo, José Ignacio
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Pérez de Landazábal Berganzo
First Name
José Ignacio
person.page.departamento
Ciencias
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
0000-0003-1172-6141
person.page.upna
1681
Name
10 results
Search Results
Now showing 1 - 10 of 10
Publication Open Access Giant stress impedance magnetoelastic sensors employing soft magnetic amorphous ribbons(MDPI, 2020) Beato López, Juan Jesús; Urdaniz Villanueva, Juan Garikoitz; Pérez de Landazábal Berganzo, José Ignacio; Gómez Polo, Cristina; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Gobierno de Navarra / Nafarroako Gobernua, VITICS, IIM14244.RI1Soft magnetic amorphous alloys obtained via rapid quenching techniques are widely employed in different technological fields such as magnetic field detection, bio labeling, non-contact positioning, etc. Among them, magnetoelastic applications stand out due to excellent mechanical properties exhibited by these alloys, resulting from their amorphous structure, namely, their high Young modulus and high tensile strength. In particular, the giant stress impedance (GSI) effect represents a powerful tool to develop highly sensitive magnetoelastic sensors. This effect is based on the changes in the high-frequency electric impedance as the result of the variation in magnetic permeability of the sample under the action of mechanical stresses. In this work, the GSI effect is analyzed in two soft magnetic ribbons ((Co0.93 Fe0.07)75 Si12.5 B12.5 and (Co0.95 Fe0.05)75 Si12.5 B12.5) for the subsequent development of two practical devices: (i) the characterization of the variations in the cross-section dimensions of irregularly shaped elements, and (ii) the design of a flow meter for measuring the rate of flow of water through a pipe.Publication Open Access Magnetocaloric effect enhancement driven by intrinsic defects in a Ni45Co5Mn35Sn15 alloy(Elsevier, 2019) Sánchez-Alarcos Gómez, Vicente; López García, Javier; Unzueta, Iraultza; Pérez de Landazábal Berganzo, José Ignacio; Recarte Callado, Vicente; Beato López, Juan Jesús; García, José Ángel; Plazaola, Fernando; Rodríguez Velamazán, José Alberto; Fisika; Institute for Advanced Materials and Mathematics - INAMAT2; FísicaThe influence of mechanically-induced defects on the magnetostructural properties is analyzed in a Ni-Co-Mn-Sn alloy subjected to soft milling and subsequent annealing treatments. It is found that, opposite to what occurs in Ni-Mn-Sn ternary alloys, the annealing treatment affects the magnetic properties in a different way in martensite and in austenite. In particular, the saturation magnetization significantly increases in martensite after annealing whereas just a very slight variation is observed in austenite. This leads to the interesting fact that the presence of microstructural defects, far for worsening, makes the magnetocaloric effect to be higher in the as-milled state than after annealing. This behavior is explained as the result of the combination of the effect of defects on the Mn-Mn distance, the effect of Co on the magnetic exchange coupling between Mn atoms, and the effect of defects on the vibrational entropy change at the martensitic transformation.Publication Open Access Magnetically activated 3D printable polylactic acid/polycaprolactone/magnetite composites for magnetic induction heating generation(Springer, 2023) Galarreta Rodríguez, Itziar; López Ortega, Alberto; Garayo Urabayen, Eneko; Beato López, Juan Jesús; La Roca, Paulo Matías; Sánchez-Alarcos Gómez, Vicente; Recarte Callado, Vicente; Gómez Polo, Cristina; Pérez de Landazábal Berganzo, José Ignacio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaAdditive manufacturing technology has attracted the attention of industrial and technological sectors due to the versatility of the design and the easy manufacture of structural and functional elements based on composite materials. The embedding of magnetic nanoparticles in the polymeric matrix enables the development of an easy manufacturing process of low-cost magnetically active novel polymeric composites. In this work, we report a series of magnetic composites prepared by solution casting method combining 5 to 60 wt.% of 140 ± 50 nm commercial Fe3O4 nanoparticles, with a semi-crystalline, biocompatible, and biodegradable polymeric blend made of polylactic acid (PLA) and polycaprolactone (PCL). The composites were extruded, obtaining 1.5 ± 0.2 mm diameter continuous and flexible filaments for fused deposition modelling 3D printing. The chemical, magnetic, and calorimetric properties of the obtained filaments were investigated by differential scanning calorimetry, thermogravimetric analysis, magnetometry, and scanning electron microscopy. Furthermore, taking advantage of the magnetic character of the filaments, their capability to generate heat under the application of low-frequency alternating magnetic fields (magnetic induction heating) was analyzed. The obtained results expose the versatility of these easy manufacturing and low-cost filaments, where selecting a desired composition, the heating capacity can be properly adjusted for those applications where magnetic induction plays a key role (i.e., magnetic hyperthermia, drug release, heterogeneous catalysis, water electrolysis, gas capture, or materials synthesis).Publication Open Access Interferometric vs wavelength selective optical fiber sensors for cryogenic temperature measurements(SPIE, 2017) Miguel Soto, Verónica de; Leandro González, Daniel; López Aldaba, Aitor; Beato López, Juan Jesús; Pérez de Landazábal Berganzo, José Ignacio; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; López-Amo Sáinz, Manuel; Ingeniaritza Elektrikoa eta Elektronikoa; Fisika; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Eléctrica y Electrónica; FísicaIn this work, a preliminary study of the behavior of two different interferometric fiber optic sensors and two different wavelength selective fiber optic sensors is performed. A photonic cristal fiber Fabry-Pérot interferometer, a Sagnac interferometer, a commercial fiber Bragg grating (FBG) and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser are analyzed. A comparison of their sensitivities and resolutions is carried out to analyze their performance as sensors for cryogenic temperatures, taking into account their advantages and drawbacks.Publication Open Access Monitoring structural transformations in metamagnetic shape memory alloys by non-contact GMI technology(IOP Publishing, 2023) Beato López, Juan Jesús; La Roca, Paulo Matías; Algueta-Miguel, Jose M.; Garayo Urabayen, Eneko; Sánchez-Alarcos Gómez, Vicente; Recarte Callado, Vicente; Gómez Polo, Cristina; Pérez de Landazábal Berganzo, José Ignacio; Ciencias; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC; Zientziak; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenDifferent applications based on metamagnetic shape memory alloy (MSMA) require monitoring the evolution of the martensitic transformation (MT) to optimize the actuation mechanism. To avoid interaction with the active material, a non-contact technique would be ideal. Nevertheless, non-contact detection involves complex methods like diffraction, optical analysis, or electromagnetic technology. The present work demonstrates that the MT can be monitored without interaction with the active material using a low-cost technology based on the Giant Magnetoimpedance (GMI) effect. The GMI sensor is based on a (CoFe)SiB soft magnetic wire submitted to an alternating current and whose second harmonic voltage variation allows to detect changes in the strength of the stray magnetic fields linked to the metamagnetic phase transition. The sensor has been tested using the MT of a NiMnInCo MSMA. A specific application for environmental temperature control using the non-contact GMI sensor is proposed.Publication Open Access Effect of Cu substitution on the magnetic and magnetic induction heating response of CdFe₂O₄ spinel ferrite(Elsevier, 2020) Ghasemi, R.; Echeverría Morrás, Jesús; Pérez de Landazábal Berganzo, José Ignacio; Beato López, Juan Jesús; Naseri, M.; Gómez Polo, Cristina; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; CienciasIn this work, a comparative study of the effect of Cu on the structural, magnetic and magnetic induction heating response in CdFe2O4 spinel is presented. The ceramic nanoparticles (Cu1−xCdxFe2O4; 0 ≤ x ≤ 1) were synthesized by co-precipitation from Cu(II), Cd(II) and Fe(III) salts. The samples, characterized by X-ray diffractometry, display the characteristic spinel cubic structure (space group Fm3m) where CdO is detected as main secondary phase (≈ 16% weight for x = 1). A high degree of nanoparticle agglomeration is inferred from the Transmission Electron Microscopy (TEM) images, as a consequence of the employed synthesis procedure. Regarding the magnetic properties, superparamagnetic behavior at room temperature can be disregarded according to the low field magnetization response (ZFC-FC curves). For 0.4 ≤ x ≤ 0.8 ratios, the samples display maximum values in the magnetic moment that should be correlated to the cation distribution between the octahedral and tetrahedral sites. Maximum magnetization values lead to an enhancement in the magnetic induction heating response characterized by highest heating temperatures under the action of an ac magnetic field. In particular, maximum SAR values are estimated for x = 0.8 as a combined effect of high magnetic moment, low dc coercive field (high susceptibility). Although these Cu-Cd ferrite nanoparticles display moderate SAR values (around 0.7 W/g), the control of the maximum heating temperatures through the cation distribution (composition) provides promising properties to be used as nanosized heating elements (i.e. hyperthermia agents).Publication Open Access Giant direct and inverse magnetocaloric effect linked to the same forward martensitic transformation(Springer Nature, 2017) Pérez de Landazábal Berganzo, José Ignacio; Recarte Callado, Vicente; Sánchez-Alarcos Gómez, Vicente; Beato López, Juan Jesús; Rodríguez Velamazán, José Alberto; Sánchez Marcos, J.; Gómez Polo, Cristina; Cesari, Eduard; Fisika; Institute for Advanced Materials and Mathematics - INAMAT2; FísicaMetamagnetic shape memory alloys have aroused considerable attraction as potential magnetic refrigerants due to the large inverse magnetocaloric effect associated to the magnetic-field-induction of a reverse martensitic transformation (martensite to austenite). In some of these alloys, the austenite phase can be retained on cooling under high magnetic fields, being the retained phase metastable after field removing. Here, we report a giant direct magnetocaloric effect linked to the anomalous forward martensitic transformation (austenite to martensite) that the retained austenite undergoes on heating. Under moderate fields of 10 kOe, an estimated adiabatic temperature change of 9 K has been obtained, which is (in absolute value) almost twice that obtained in the conventional transformation under higher applied fields. The observation of a different sign on the temperature change associated to the same austenite to martensite transformation depending on whether it occurs on heating (retained) or on cooling is attributed to the predominance of the magnetic or the vibrational entropy terms, respectively.Publication Open Access Magnetic binary encoding system based on 3D printing and GMI detection prototype(Elsevier, 2022) Beato López, Juan Jesús; Algueta-Miguel, Jose M.; Galarreta Rodríguez, Itziar; López Ortega, Alberto; Garayo Urabayen, Eneko; Gómez Polo, Cristina; Aresti Bartolomé, Maite; Soria Picón, Eneko; Pérez de Landazábal Berganzo, José Ignacio; Ciencias; Zientziak; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this work, the feasibility of a magnetic binary encoding system using 3D printing technology is analyzed. The study has a double interest, that is, the possibility of printing a 3D piece that contains the codified information and the development of a system for its decoding. For this purpose, magnetic nanoparticles (magnetite Fe3O4) were embedded in a polymeric matrix of Polylactic Acid (PLA) and Poly-ε-caprolactone (PCL). Similar to a conventional barcode, a rectangular piece with an alternating pattern of strips with absence (only polymer) and a 5 wt% of embedded magnetic nanoparticles was 3D printed employing the Fused Deposition Modelling tech- nique (FDM). The information was decoded by means of a Giant Magnetoimpedance (GMI) sensor-based pro- totype, by scanning the surface of the piece and measuring the changes in the magnetic field. As sensor nucleus, an amorphous soft magnetic wire of nominal composition (Co0.94 Fe0.06)72.5 Si12.5 B15 was employed. The decoding prototype incorporates a homemade electronic sensor interface that permits, at the time, the GMI sensor excitation and the subsequent signal conditioning to optimize its response. The output signal enables the detection of the magnetite nanoparticles and the magnetic decoding of the encoded information (“1” and “0”, presence or absence of the magnetic nanoparticles, respectively).Publication Open Access Study of optical fiber sensors for cryogenic temperature measurements(MDPI, 2017) Miguel Soto, Verónica de; Leandro González, Daniel; López Aldaba, Aitor; Beato López, Juan Jesús; Pérez de Landazábal Berganzo, José Ignacio; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; López-Amo Sáinz, Manuel; Ingeniaritza Elektrikoa eta Elektronikoa; Fisika; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Física; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG), and a -phase shifted fiber Bragg grating interrogated in In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG), and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber.Publication Open Access Non-linear GMI decoding in 3D printed magnetic encoded systems(Elsevier, 2023) Beato López, Juan Jesús; Algueta-Miguel, Jose M.; Galarreta Rodríguez, Itziar; Garayo Urabayen, Eneko; López Ortega, Alberto; Gómez Polo, Cristina; Pérez de Landazábal Berganzo, José Ignacio; Ciencias; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC; Zientziak; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe nonlinear giant magnetoimpedance (GMI) effect was explored as a highly sensitive sensing technology in 3D-printed magnetic encoded systems. Magnetic nanoparticles with low (magnetite, Fe3O4) and high (Co ferrite, Co0.7Fe2.3O4) magnetic remanence were embedded (10 wt%) in a polymeric matrix of Polylactic Acid (PLA) and Poly-ε-caprolactone (PCL) and extruded in magnetic filaments to be 3D printed by the Fused Deposition Modelling technique (FDM). Two different geometries were constructed namely, individual magnetic strips and fixed barcoded pieces. The stray magnetic fields generated by the magnetic nanoparticles were detected through the non-linear (second harmonic) GMI voltage using a soft magnetic CoFeSiB wire as the nucleus sensor. The decoding response was analyzed as a function of the magnetization remanence of the nanoparticles, the distance between the individual magnetic strips, and the position (height) of the GMI decoding sensor. It has been shown that modification of the net magnetization direction of each individual fixed strip within the barcode geometry is possible through the application of local external magnetic fields. This possibility improves the versatility of the 3D binary encoding system by adding an additional state (0 without nanoparticles, 1 or −1 depending on the relative orientation of the net magnetization along the strips) during the codifying procedure.