Person:
Pérez de Landazábal Berganzo, José Ignacio

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Pérez de Landazábal Berganzo

First Name

José Ignacio

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

ORCID

0000-0003-1172-6141

person.page.upna

1681

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Study of the martensitic transition in Ni-Mn-Sn-Ti ferromagnetic shape memory alloys
    (Rede Latino-Americana de Materiais, 2018) Bonifacich, Federico Guillermo; Lambri, Osvaldo Agustín; Pérez de Landazábal Berganzo, José Ignacio; Recarte Callado, Vicente; Sánchez-Alarcos Gómez, Vicente; Fisika; Institute for Advanced Materials and Mathematics - INAMAT2; Física; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In the present work, mechanical spectroscopy measurements as a function of temperature and strain have been performed in (at.%) Ni50Mn37Sn13-xTix (x=0, 0.5 and 2) ferromagnetic shape memory alloys in order both to study martensitic transition phenomenon and also to determine its temperature of appearance. For mechanical spectroscopy measurements, a five elements piezoelectric device recently developed has been used. In addition, other characterization techniques as, differential thermal analysis and superconducting quantum interference magnetic spectroscopy, were also used. Besides, relaxation processes near the martensitic transition temperature have been also observed.
  • PublicationOpen Access
    Influence of defects on the irreversible phase transition in the Fe-Pd doped with Co and Mn
    (Rede Latino-Americana de Materiais, 2018) Bonifacich, Federico Guillermo; Lambri, Osvaldo Agustín; Pérez de Landazábal Berganzo, José Ignacio; Recarte Callado, Vicente; Sánchez-Alarcos Gómez, Vicente; Fisika; Institute for Advanced Materials and Mathematics - INAMAT2; Física; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The appearance of BCT martensite in Fe-Pd-based ferromagnetic shape memory alloys, which develops at lower temperatures than the thermoelastic martensitic transition, deteriorates the shape memory properties. In a previous work performed in Fe70Pd30, it was shown that a reduction in defects density reduces the non thermoelastic FCT-BCT transformation temperature. In the present work, the influence of quenched-in-defects upon the intensity and temperature of the thermoelastic martensitic (FCC-FCT) and the non thermoelastic (FCT-BCT) transitions in Fe-Pd doped with Co and Mn is studied. Differential scanning calorimetric and mechanical spectroscopy studies demonstrate that a reduction in the dislocation density the stability range of the FCC-FCT reversible transformation in Fe67Pd30Co3 and Fe66.8Pd30.7Mn2.5 ferromagnetic shape memory alloys.