Pérez de Landazábal Berganzo, José Ignacio

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Pérez de Landazábal Berganzo

First Name

José Ignacio

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Entropy change caused by martensitic transformations of ferromagnetic shape memory alloys
    (MDPI, 2017) L'vov, Victor A.; Cesari, Eduard; Kosogor, Anna; Torrens Serra, Joan; Recarte Callado, Vicente; Pérez de Landazábal Berganzo, José Ignacio; Física; Fisika
    In this paper, our most recent findings on the influence of magnetic order on the main transformational caloric and elastic properties of shape memory alloys (SMAs) are reviewed. It is argued that ferromagnetic order has a strong influence on the temperature interval of martensitic transformation (MT), the characteristics of stress-induced MT, and the shear elastic modulus of SMA. The problem of separation of the magnetic contributions to the entropy change ΔS and heat Q exchanged in the course of martensitic transformation (MT) of SMA is considered in general terms, and theoretical formulas enabling the solution of the problem are presented. As an example, the ΔS and Q values, which were experimentally determined for Ni-Mn-Ga and Ni-Fe-Ga alloys with different Curie temperatures TC and MT temperatures TM, are theoretically analyzed. It is shown that for Ni-Mn-Ga martensites with TM < TC, the ratio of elastic and magnetic contributions to the entropy change may be greater or smaller than unity, depending on the temperature difference TC – TM.
  • PublicationOpen Access
    Long-range atomic order and entropy change at the martensitic transformation in a Ni-Mn-In-Co metamagnetic shape memory alloy
    (MDPI, 2014) Sánchez-Alarcos Gómez, Vicente; Recarte Callado, Vicente; Pérez de Landazábal Berganzo, José Ignacio; Cesari, Eduard; Rodríguez Velamazán, José Alberto; Física; Fisika
    The influence of the atomic order on the martensitic transformation entropy change has been studied in a Ni-Mn-In-Co metamagnetic shape memory alloy through the evolution of the transformation temperatures under high-temperature quenching and post-quench annealing thermal treatments. It is confirmed that the entropy change evolves as a consequence of the variations on the degree of L21 atomic order brought by thermal treatments, though, contrary to what occurs in ternary Ni-Mn-In, post-quench aging appears to be the most effective way to modify the transformation entropy in Ni-Mn-In-Co. It is also shown that any entropy change value between around 40 and 5 J/kgK can be achieved in a controllable way for a single alloy under the appropriate aging treatment, thus bringing out the possibility of properly tune the magnetocaloric effect.