Person:
Pérez de Landazábal Berganzo, José Ignacio

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Pérez de Landazábal Berganzo

First Name

José Ignacio

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

ORCID

0000-0003-1172-6141

person.page.upna

1681

Name

Search Results

Now showing 1 - 10 of 40
  • PublicationOpen Access
    Steering the synthesis of Fe3O4 nanoparticles under sonication by using a fractional factorial design
    (Elsevier, 2021) Echeverría Morrás, Jesús; Moriones Jiménez, Paula; Garrido Segovia, Julián José; Ugarte Martínez, María Dolores; Cervera Gabalda, Laura María; Garayo Urabayen, Eneko; Gómez Polo, Cristina; Pérez de Landazábal Berganzo, José Ignacio; Ciencias; Zientziak; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua
    Superparamagnetic iron oxide nanoparticles (MNPs) have the potential to act as heat sources in magnetic hyperthermia. The key parameter for this application is the specific absorption rate (SAR), which must be as large as possible in order to optimize the hyperthermia treatment. We applied a Plackett-Burman fractional factorial design to investigate the effect of total iron concentration, ammonia concentration, reaction temperature, sonication time and percentage of ethanol in the aqueous media on the properties of iron oxide MNPs. Characterization techniques included total iron content, Fourier Transform Infrared Spectroscopy, X-Ray Diffraction, High Resolution Transmission Electron Microscopy, and Dynamic Magnetization. The reaction pathway in the coprecipitation reaction depended on the initial Fe concentration. Samples synthesized from 0.220 mol L−1 Fe yielded magnetite and metastable precipitates of iron oxyhydroxides. An initial solution made up of 0.110 mol L−1 total Fe and either 0.90 or 1.20 mol L−1 NH3(aq) led to the formation of magnetite nanoparticles. Sonication of the reaction media promoted a phase transformation of metastable oxyhydroxides to crystalline magnetite, the development of crystallinity, and the increase of specific absorption rate under dynamic magnetization.
  • PublicationOpen Access
    Influence of structural defects on the properties of metamagnetic shape memory alloys
    (MDPI, 2020) Pérez de Landazábal Berganzo, José Ignacio; Sánchez-Alarcos Gómez, Vicente; Recarte Callado, Vicente; Lambri, Osvaldo Agustín; López García, Javier; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias
    The production of µ-particles of Metamagnetic Shape Memory Alloys by crushing and subsequent ball milling process has been analyzed. The high energy involved in the milling process induces large internal stresses and high density of defects with a strong influence on the martensitic transformation; the interphase creation and its movement during the martensitic transformation produces frictional contributions to the entropy change (exothermic process) both during forward and reverse transformation. The frictional contribution increases with the milling time as a consequence of the interaction between defects and interphases. The influence of the frictional terms on the magnetocaloric effect has been evidenced. Besides, the presence of antiphase boundaries linked to superdislocations helps to understand the spin-glass behavior at low temperatures in martensite. Finally, the particles in the deformed state were introduced in a photosensitive polymer. The mechanical damping associated to the Martensitic Transformation (MT) of the particles is clearly distinguished in the produced composite, which could be interesting for the development of magnetically-tunable mechanical dampers.
  • PublicationOpen Access
    Effect of Cu substitution on the magnetic and magnetic induction heating response of CdFe₂O₄ spinel ferrite
    (Elsevier, 2020) Ghasemi, R.; Echeverría Morrás, Jesús; Pérez de Landazábal Berganzo, José Ignacio; Beato López, Juan Jesús; Naseri, M.; Gómez Polo, Cristina; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias
    In this work, a comparative study of the effect of Cu on the structural, magnetic and magnetic induction heating response in CdFe2O4 spinel is presented. The ceramic nanoparticles (Cu1−xCdxFe2O4; 0 ≤ x ≤ 1) were synthesized by co-precipitation from Cu(II), Cd(II) and Fe(III) salts. The samples, characterized by X-ray diffractometry, display the characteristic spinel cubic structure (space group Fm3m) where CdO is detected as main secondary phase (≈ 16% weight for x = 1). A high degree of nanoparticle agglomeration is inferred from the Transmission Electron Microscopy (TEM) images, as a consequence of the employed synthesis procedure. Regarding the magnetic properties, superparamagnetic behavior at room temperature can be disregarded according to the low field magnetization response (ZFC-FC curves). For 0.4 ≤ x ≤ 0.8 ratios, the samples display maximum values in the magnetic moment that should be correlated to the cation distribution between the octahedral and tetrahedral sites. Maximum magnetization values lead to an enhancement in the magnetic induction heating response characterized by highest heating temperatures under the action of an ac magnetic field. In particular, maximum SAR values are estimated for x = 0.8 as a combined effect of high magnetic moment, low dc coercive field (high susceptibility). Although these Cu-Cd ferrite nanoparticles display moderate SAR values (around 0.7 W/g), the control of the maximum heating temperatures through the cation distribution (composition) provides promising properties to be used as nanosized heating elements (i.e. hyperthermia agents).
  • PublicationOpen Access
    Polycaprolactone/MSMA composites for magnetic refrigeration applications
    (Wiley, 2024-09-06) Sánchez-Alarcos Gómez, Vicente; Khanna, Deepali; La Roca, Paulo Matías; Recarte Callado, Vicente; Lambri, Fernando Daniel; Bonifacich, Federico Guillermo; Lambri, Osvaldo Agustín; Royo Silvestre, Isaac; Urbina Yeregui, Antonio; Pérez de Landazábal Berganzo, José Ignacio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    A high filling load (62% weight) printable magnetic composite has been elaborated from the dispersion of magnetocaloric Ni45Mn36.7In13.3Co5 metamagnetic shape memory alloy microparticles into a PCL polymer matrix. The composite material has been prepared by solution method, resulting in a very homogeneous particles dispersion into the matrix. The structural transitions in the polymer are not affected by the addition of the metallic microparticles, which in turn results in a significant increase of the mechanical consistency. The good ductility of the elaborated composite allows its extrusion in flexible printable filaments, from which 3D pieces with complex geometries have been grown. The heat transfer of the composite material has been assessed from finite element simulation. In spite of the achievable magnetocaloric values are moderated with respect to the bulk, numerical simulations confirm that, in terms of heat transference, a PCL/Ni-Mn-In-Co wire is more efficient than a bulk Ni-Mn-In-Co cubic piece containing the same amount of magnetic active material. The quite good magnetocaloric response of the composite and the possibility to print high surface/volume ratio geometries make this material a promising candidate for the development of heat exchangers for clean and efficient magnetic refrigeration applications.
  • PublicationOpen Access
    Non-linear GMI decoding in 3D printed magnetic encoded systems
    (Elsevier, 2023) Beato López, Juan Jesús; Algueta-Miguel, Jose M.; Galarreta Rodríguez, Itziar; Garayo Urabayen, Eneko; López Ortega, Alberto; Gómez Polo, Cristina; Pérez de Landazábal Berganzo, José Ignacio; Ciencias; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC; Zientziak; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The nonlinear giant magnetoimpedance (GMI) effect was explored as a highly sensitive sensing technology in 3D-printed magnetic encoded systems. Magnetic nanoparticles with low (magnetite, Fe3O4) and high (Co ferrite, Co0.7Fe2.3O4) magnetic remanence were embedded (10 wt%) in a polymeric matrix of Polylactic Acid (PLA) and Poly-ε-caprolactone (PCL) and extruded in magnetic filaments to be 3D printed by the Fused Deposition Modelling technique (FDM). Two different geometries were constructed namely, individual magnetic strips and fixed barcoded pieces. The stray magnetic fields generated by the magnetic nanoparticles were detected through the non-linear (second harmonic) GMI voltage using a soft magnetic CoFeSiB wire as the nucleus sensor. The decoding response was analyzed as a function of the magnetization remanence of the nanoparticles, the distance between the individual magnetic strips, and the position (height) of the GMI decoding sensor. It has been shown that modification of the net magnetization direction of each individual fixed strip within the barcode geometry is possible through the application of local external magnetic fields. This possibility improves the versatility of the 3D binary encoding system by adding an additional state (0 without nanoparticles, 1 or −1 depending on the relative orientation of the net magnetization along the strips) during the codifying procedure.
  • PublicationOpen Access
    Identification of a Ni-vacancy defect in Ni-Mn-Z (Z = Ga, Sn, In): an experimental and DFT positron-annihilation study
    (American Physical Society, 2019) Unzueta, Iraultza; Sánchez-Alarcos Gómez, Vicente; Recarte Callado, Vicente; Pérez de Landazábal Berganzo, José Ignacio; Zabala, Nerea; García, José Ángel; Plazaola, Fernando; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias
    By means of experimental positron-annihilation-lifetime measurements and theoretical density functional theory (DFT) positron-lifetime calculations, vacancy-type defects in Ni50Mn50−xSnx (x = 25, 20, 15, 13, 10) and Ni50Mn50−xInx (x = 25, 20, 16, 13) systems are systematically studied. The study is extended to Ni-Mn-Ga systems as well. Experimental results are complemented with electron-positron DFT calculations carried out within the local density approximation and generalized gradient approximation, where five different parametrizations accounting for the γ (r) enhancement factor are analyzed. Theoretical results indicate that the Boronski-Nieminen parametrization of γ (r) is the one that best predicts the experimental results, which ultimately enables us to identify VNi as the vacancy present in the studied samples. The characteristic positron lifetime related to VNi ranges between 181 and 191 ps in Ni-Mn-Sn/In systems. Positron-annihilation-lifetime spectroscopy results in these two systems delimit the lower bound of the achievable vacancy concentration, which is much larger compared with the reported values in Ni-Mn-Ga systems. The present work, along with setting the basis for positron simulations in Ni-Mn based Heusler alloys, delimits the effect that the variation of vacancies has in the martensitic transformation in Ni-Mn-Sn systems.
  • PublicationOpen Access
    Study of the martensitic transition in Ni-Mn-Sn-Ti ferromagnetic shape memory alloys
    (Rede Latino-Americana de Materiais, 2018) Bonifacich, Federico Guillermo; Lambri, Osvaldo Agustín; Pérez de Landazábal Berganzo, José Ignacio; Recarte Callado, Vicente; Sánchez-Alarcos Gómez, Vicente; Fisika; Institute for Advanced Materials and Mathematics - INAMAT2; Física; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In the present work, mechanical spectroscopy measurements as a function of temperature and strain have been performed in (at.%) Ni50Mn37Sn13-xTix (x=0, 0.5 and 2) ferromagnetic shape memory alloys in order both to study martensitic transition phenomenon and also to determine its temperature of appearance. For mechanical spectroscopy measurements, a five elements piezoelectric device recently developed has been used. In addition, other characterization techniques as, differential thermal analysis and superconducting quantum interference magnetic spectroscopy, were also used. Besides, relaxation processes near the martensitic transition temperature have been also observed.
  • PublicationOpen Access
    Routes for enhanced magnetism in Ni-Mn-In metamagnetic shape memory alloys
    (Elsevier, 2019) López García, Javier; Sánchez-Alarcos Gómez, Vicente; Recarte Callado, Vicente; Pérez de Landazábal Berganzo, José Ignacio; Fabelo, O.; Cesari, Eduard; Rodríguez Velamazán, José Alberto; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias
    The authors provide in-depth physical insight into the enhancement of the magnetic properties of metamagnetic shape memory alloys produced by thermal treatment and cobalt doping. They use neutron scattering to study the atomic order and magnetic structures in the austenitic phases of Ni50Mn34In16 and Ni45Co5Mn37In13 alloys in two different states induced by thermal treatments. The increase of the magnetization in the austenite phase, particularly by cobalt doping, is explained by the enhanced ferromagnetic coupling between the magnetic moments located in octahedral sites. The spin density maps obtained from polarized neutron diffraction reveal the magnetic interaction pathways responsible for this coupling scheme.
  • PublicationOpen Access
    Magnetocaloric effect enhancement driven by intrinsic defects in a Ni45Co5Mn35Sn15 alloy
    (Elsevier, 2019) Sánchez-Alarcos Gómez, Vicente; López García, Javier; Unzueta, Iraultza; Pérez de Landazábal Berganzo, José Ignacio; Recarte Callado, Vicente; Beato López, Juan Jesús; García, José Ángel; Plazaola, Fernando; Rodríguez Velamazán, José Alberto; Fisika; Institute for Advanced Materials and Mathematics - INAMAT2; Física
    The influence of mechanically-induced defects on the magnetostructural properties is analyzed in a Ni-Co-Mn-Sn alloy subjected to soft milling and subsequent annealing treatments. It is found that, opposite to what occurs in Ni-Mn-Sn ternary alloys, the annealing treatment affects the magnetic properties in a different way in martensite and in austenite. In particular, the saturation magnetization significantly increases in martensite after annealing whereas just a very slight variation is observed in austenite. This leads to the interesting fact that the presence of microstructural defects, far for worsening, makes the magnetocaloric effect to be higher in the as-milled state than after annealing. This behavior is explained as the result of the combination of the effect of defects on the Mn-Mn distance, the effect of Co on the magnetic exchange coupling between Mn atoms, and the effect of defects on the vibrational entropy change at the martensitic transformation.
  • PublicationOpen Access
    Long-range atomic order and entropy change at the martensitic transformation in a Ni-Mn-In-Co metamagnetic shape memory alloy
    (MDPI, 2014) Sánchez-Alarcos Gómez, Vicente; Recarte Callado, Vicente; Pérez de Landazábal Berganzo, José Ignacio; Cesari, Eduard; Rodríguez Velamazán, José Alberto; Física; Fisika
    The influence of the atomic order on the martensitic transformation entropy change has been studied in a Ni-Mn-In-Co metamagnetic shape memory alloy through the evolution of the transformation temperatures under high-temperature quenching and post-quench annealing thermal treatments. It is confirmed that the entropy change evolves as a consequence of the variations on the degree of L21 atomic order brought by thermal treatments, though, contrary to what occurs in ternary Ni-Mn-In, post-quench aging appears to be the most effective way to modify the transformation entropy in Ni-Mn-In-Co. It is also shown that any entropy change value between around 40 and 5 J/kgK can be achieved in a controllable way for a single alloy under the appropriate aging treatment, thus bringing out the possibility of properly tune the magnetocaloric effect.