Pérez de Landazábal Berganzo, José Ignacio
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Pérez de Landazábal Berganzo
First Name
José Ignacio
person.page.departamento
Ciencias
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
26 results
Search Results
Now showing 1 - 10 of 26
Publication Embargo Modified rule of mixtures and Halpin-Tsai models applied to PCL/NiMnInCo 4D printed composites. Internal stresses study during the martensitic transformation.(Elsevier, 2025-05-26) Lambri, Fernando Daniel; Bonifacich, Federico Guillermo; Lambri, Osvaldo Agustín; Weidenfeller, B.; Recarte Callado, Vicente; Sánchez-Alarcos Gómez, Vicente; Pérez de Landazábal Berganzo, José Ignacio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa4D printing enables the manufacturing of complex smart components in a wide variety of shapes. In devices based on 4D printed composite materials, the interaction between the active microparticles and the printable polymer matrix plays a critical role for the optimal functionality. Key parameters in these materials are the elastic misfit coefficient, which monitors internal stresses, and elastic energy transfer, which determines the ability to transfer strain from the microparticles to the surrounding matrix. In this work, the temperature-dependent shear modulus of PCL/Ni45Mn36.7In13.3Co5 4D printed composites is analysed using the modified rule of mixture (ROM) and Halpin-Tsai (HT) models. The molecular flow caused by the polymer chain movement under oscillatory mechanical stress at relatively elevated temperatures is examined and discussed using these models. Additionally, the effect of an external direct magnetic field on the shear modulus is also analysed. Finally, the internal stresses in the composite materials resulting from the martensitic transformation in the active microparticles are studied through a modified mean-field model based on the Eshelby's inclusion theory.Publication Open Access High functional 3D printed PCL/FSMA magnetic composites(IOP Publishing, 2024) Lambri, Fernando Daniel; Bonifacich, Federico Guillermo; Lambri, Osvaldo Agustín; Khanna, Deepali; Pérez de Landazábal Berganzo, José Ignacio; Recarte Callado, Vicente; Sánchez-Alarcos Gómez, Vicente; Lambri, Melania Lucila; Zelada, Griselda Irene; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2The capacity of adaptability of a three-dimensional-printed composite of polycaprolactone-based containing micro-particles of ferromagnetic shape memory alloy of composition Ni45Mn36.7In13.3Co5 was determined. Composites exhibit an increase in both damping and modulus values up to around 11%, at temperatures close to 325 K, when applying a magnetic field of 120 kA m−1. In addition, composites show also an increase in the damping values of around 50% at temperatures near 333 K, related to the martensitic transformation, which is promoted by an increase in the oscillating strain from 0.5 × 10−4 up to 2 × 10−4 and when applying a magnetic field of 120 kA m−1. Moreover, the maximum temperature of use of the composite can be increased by means of a magnetic field. These adaptability qualities make this functional composite attractive, for the vibration control at elevated temperatures as well as the potential applications in magnetocaloric devices.Publication Open Access Magnetically activated 3D printable polylactic acid/polycaprolactone/magnetite composites for magnetic induction heating generation(Springer, 2023) Galarreta Rodríguez, Itziar; López Ortega, Alberto; Garayo Urabayen, Eneko; Beato López, Juan Jesús; La Roca, Paulo Matías; Sánchez-Alarcos Gómez, Vicente; Recarte Callado, Vicente; Gómez Polo, Cristina; Pérez de Landazábal Berganzo, José Ignacio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaAdditive manufacturing technology has attracted the attention of industrial and technological sectors due to the versatility of the design and the easy manufacture of structural and functional elements based on composite materials. The embedding of magnetic nanoparticles in the polymeric matrix enables the development of an easy manufacturing process of low-cost magnetically active novel polymeric composites. In this work, we report a series of magnetic composites prepared by solution casting method combining 5 to 60 wt.% of 140 ± 50 nm commercial Fe3O4 nanoparticles, with a semi-crystalline, biocompatible, and biodegradable polymeric blend made of polylactic acid (PLA) and polycaprolactone (PCL). The composites were extruded, obtaining 1.5 ± 0.2 mm diameter continuous and flexible filaments for fused deposition modelling 3D printing. The chemical, magnetic, and calorimetric properties of the obtained filaments were investigated by differential scanning calorimetry, thermogravimetric analysis, magnetometry, and scanning electron microscopy. Furthermore, taking advantage of the magnetic character of the filaments, their capability to generate heat under the application of low-frequency alternating magnetic fields (magnetic induction heating) was analyzed. The obtained results expose the versatility of these easy manufacturing and low-cost filaments, where selecting a desired composition, the heating capacity can be properly adjusted for those applications where magnetic induction plays a key role (i.e., magnetic hyperthermia, drug release, heterogeneous catalysis, water electrolysis, gas capture, or materials synthesis).Publication Open Access Analysis of the strain misfit between matrix and inclusions in a magnetically tunable composite(Elsevier, 2021) Bonifacich, Federico Guillermo; Lambri, Osvaldo Agustín; Lambri, Fernando Daniel; Bozzano, P. B.; Recarte Callado, Vicente; Sánchez-Alarcos Gómez, Vicente; Pérez de Landazábal Berganzo, José Ignacio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaA magnetically tunable composite has been elaborated by embedding microparticles of a metamagnetic shape memory alloy on a photo curable resin. The strain misfit between the polymeric matrix and the inclusions has been analysed within Eshelby formalism. Results show the non-appearance of active microcracks at the interfaces where strains are induced by the martensitic transformation in the microparticles. Even though the martensitic transformation is well detected, the values of misfit β coefficient indicate that the matrix accommodates all the stresses induced by the inclusions. A stable surface interaction between particles and matrix is also confirmed during thermal cycles. It is also demonstrated that the damping capacity of the composites can be tuned by combining oscillating strain, fillers content and magnetic field. The proposed model could be applied to analyse the mechanical stability in polymer matrix composites in which fillers undergo a first order transition with volume change and associated deformation.Publication Open Access Martensitic transformation controlled by electromagnetic field: from experimental evidence to wireless actuator applications(Elsevier, 2022) Garayo Urabayen, Eneko; La Roca, Paulo Matías; Gómez Polo, Cristina; Sánchez-Alarcos Gómez, Vicente; Recarte Callado, Vicente; Pérez de Landazábal Berganzo, José Ignacio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Gobierno de Navarra / Nafarroako GobernuaMechanical actuators based on shape memory alloys (SMA) are becoming a key component in the development of novel soft robotic applications and surgically implantable devices. Their working principle relies in the temperature induced martensitic transformation (MT), which is responsible of the actuation mechanism. In this work, we found experimental evidence to show that the martensitic transformation can be controlled by electromagnetic field (EF) by a wireless process in ferromagnetic shape memory alloys. It is shown that the martensitic transformation can be driven by an external EF (frequency 45 kHz) while the specific absorption rate (SAR), which was determined through real-time dynamic magnetization measurements, allows the instantaneous monitoring of the transformation evolution. On the basis of the obtained results, we propose a strategy to achieve a battery-free wireless SMA actuator that can be remotely controlled. This concept can be applicable to other SMA material that exhibit a similar magneto-structural phase transitionPublication Open Access Steering the synthesis of Fe3O4 nanoparticles under sonication by using a fractional factorial design(Elsevier, 2021) Echeverría Morrás, Jesús; Moriones Jiménez, Paula; Garrido Segovia, Julián José; Ugarte Martínez, María Dolores; Cervera Gabalda, Laura María; Garayo Urabayen, Eneko; Gómez Polo, Cristina; Pérez de Landazábal Berganzo, José Ignacio; Ciencias; Zientziak; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako GobernuaSuperparamagnetic iron oxide nanoparticles (MNPs) have the potential to act as heat sources in magnetic hyperthermia. The key parameter for this application is the specific absorption rate (SAR), which must be as large as possible in order to optimize the hyperthermia treatment. We applied a Plackett-Burman fractional factorial design to investigate the effect of total iron concentration, ammonia concentration, reaction temperature, sonication time and percentage of ethanol in the aqueous media on the properties of iron oxide MNPs. Characterization techniques included total iron content, Fourier Transform Infrared Spectroscopy, X-Ray Diffraction, High Resolution Transmission Electron Microscopy, and Dynamic Magnetization. The reaction pathway in the coprecipitation reaction depended on the initial Fe concentration. Samples synthesized from 0.220 mol L−1 Fe yielded magnetite and metastable precipitates of iron oxyhydroxides. An initial solution made up of 0.110 mol L−1 total Fe and either 0.90 or 1.20 mol L−1 NH3(aq) led to the formation of magnetite nanoparticles. Sonication of the reaction media promoted a phase transformation of metastable oxyhydroxides to crystalline magnetite, the development of crystallinity, and the increase of specific absorption rate under dynamic magnetization.Publication Open Access Influence of structural defects on the properties of metamagnetic shape memory alloys(MDPI, 2020) Pérez de Landazábal Berganzo, José Ignacio; Sánchez-Alarcos Gómez, Vicente; Recarte Callado, Vicente; Lambri, Osvaldo Agustín; López García, Javier; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; CienciasThe production of µ-particles of Metamagnetic Shape Memory Alloys by crushing and subsequent ball milling process has been analyzed. The high energy involved in the milling process induces large internal stresses and high density of defects with a strong influence on the martensitic transformation; the interphase creation and its movement during the martensitic transformation produces frictional contributions to the entropy change (exothermic process) both during forward and reverse transformation. The frictional contribution increases with the milling time as a consequence of the interaction between defects and interphases. The influence of the frictional terms on the magnetocaloric effect has been evidenced. Besides, the presence of antiphase boundaries linked to superdislocations helps to understand the spin-glass behavior at low temperatures in martensite. Finally, the particles in the deformed state were introduced in a photosensitive polymer. The mechanical damping associated to the Martensitic Transformation (MT) of the particles is clearly distinguished in the produced composite, which could be interesting for the development of magnetically-tunable mechanical dampers.Publication Open Access Magnetic-field-assisted photocatalysis of N-TiO2 nanoparticles(IEEE, 2023-09-04) Cervera Gabalda, Laura María; Garayo Urabayen, Eneko; Beato López, Juan Jesús; Pérez de Landazábal Berganzo, José Ignacio; Gómez Polo, Cristina; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2Nitrogen doped TiO2 nanoparticles were synthesized through solvothermal method employing Ti (IV) butoxide and HNO3 as precursors. Structural and optical characterizations confirm their nanometer nature (sizes around 10 nm) and the band-gap energy values in the UV range (3.2 eV). Nitrogen doping enhances the occurrence of optical Urbach tails extending towards the visible region. Visible photocatalytic performance (degradation of methyl orange) is correlated with maximum values in the magnetic susceptibility linked to a magnetic polarization of the anatase structure via defects (oxygen vacancies). The application of magnetic field provides a positive effect (acceleration in reaction kinetics) within the UV-Vis range.Publication Open Access Calibrating lower-middle Miocene mammal faunas and unravelling climate change during the Miocene Climate Optimum: the Bardenas Reales de Navarra record (Ebro basin, NE Iberian Peninsula)(Springer, 2024-10-22) Larrasoaña, Juan Cruz; Suárez-Hernando, Oier; Beamud, Elisabet; Garcés, Miguel; Pérez de Landazábal Berganzo, José Ignacio; Gómez Polo, Cristina; Ruiz-Sánchez, Francisco Javier; Mata, María Pilar; Murelaga, Xabier; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2The chronology of lower Miocene Iberian small mammal faunas is still poorly constrained given the scarcity of well dated sedimentary successions including small mammal fossil localities. Such scarcity has prevented also an accurate understanding of the response of European terrestrial ecosystem to global changes across the Miocene climate optimum (MCO), one of the best analogues of present-day global warming. Here we present an updated fossil small mammal record of the Bardenas Reales de Navarra (western Ebro basin, Spain), where an expanded lower to middle Miocene continental succession is superbly exposed. Previous and new magnetostratigraphic results from this succession have enabled us to propose, along with additional magnetostratigraphically-dated Iberian faunas, a new chronology for local zones Y to D (Mammal Neogene zones MN2 to MN5). In addition to that, the studied small mammal faunas point to a gradual increase in temperature and humidity conditions in SW Europe between 20 and 15.5 Ma, which appears to be coupled with the progressive shift towards warmer regional (Atlantic) and global conditions across the MCO, thereby pointing to gradual changes in oceanic circulation as the main driver of this period of global warmth. The evolution of sedimentary facies appears to indicate a threshold response of the Ebro basin hydrological balance to the MCO, whereas pedogenic formation of magnetic minerals seems to be linked to periods of enhanced climate variability. These results highlight the need of combining different paleoenvironmental indicators in order to obtain a reliable view of the response of continental ecosystems to global warming.Publication Open Access Giant stress impedance magnetoelastic sensors employing soft magnetic amorphous ribbons(MDPI, 2020) Beato López, Juan Jesús; Urdaniz Villanueva, Juan Garikoitz; Pérez de Landazábal Berganzo, José Ignacio; Gómez Polo, Cristina; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Gobierno de Navarra / Nafarroako Gobernua, VITICS, IIM14244.RI1Soft magnetic amorphous alloys obtained via rapid quenching techniques are widely employed in different technological fields such as magnetic field detection, bio labeling, non-contact positioning, etc. Among them, magnetoelastic applications stand out due to excellent mechanical properties exhibited by these alloys, resulting from their amorphous structure, namely, their high Young modulus and high tensile strength. In particular, the giant stress impedance (GSI) effect represents a powerful tool to develop highly sensitive magnetoelastic sensors. This effect is based on the changes in the high-frequency electric impedance as the result of the variation in magnetic permeability of the sample under the action of mechanical stresses. In this work, the GSI effect is analyzed in two soft magnetic ribbons ((Co0.93 Fe0.07)75 Si12.5 B12.5 and (Co0.95 Fe0.05)75 Si12.5 B12.5) for the subsequent development of two practical devices: (i) the characterization of the variations in the cross-section dimensions of irregularly shaped elements, and (ii) the design of a flow meter for measuring the rate of flow of water through a pipe.
- «
- 1 (current)
- 2
- 3
- »