León Iriarte, Javier
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
León Iriarte
First Name
Javier
person.page.departamento
Ingeniería
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
1 results
Search Results
Now showing 1 - 1 of 1
Publication Open Access Experimental and FEM analysis of wear behaviour in AA5083 ultrafine-grained cams(MDPI, 2020) Luis Pérez, Carmelo Javier; Luri Irigoyen, Rodrigo; Fuertes Bonel, Juan Pablo; León Iriarte, Javier; Salcedo Pérez, Daniel; Puertas Arbizu, Ignacio; Ingeniería; IngeniaritzaSevere plastic deformation (SPD) processes have attracted a great deal of both scientific and technological interest over the last few years as a consequence of the improvements that are possible to obtain in the microstructure and mechanical properties of the materials manufactured through the use of these kind of processes. However, the practical applications of such materials to obtain mechanical components are significantly fewer. As a direct consequence, the same thing has been observed in the development of studies that show the in-service behaviour of the mechanical components developed in this way. Since one of the industrial objectives of these SPD processes is to obtain functional parts, it is necessary to carry out studies to fill this gap. Therefore, in this study, an analysis of the wear that cams undergo when manufactured from an AA5083 aluminium-magnesium alloy is carried out. The cams were isothermally-forged from materials with and without previous SPD processing by equal channel angular pressing (ECAP). Subsequently, the wear behaviour of these cams was analysed by using specific equipment, which may have been considered to have a block-on-ring configuration, developed for testing in-service wear behaviour of mechanical parts. From this comparative wear study with cams, it is shown that previously-processed materials by ECAP have a better wear performance. Moreover, finite element modelling (FEM) simulations were also included to predict wear in the cams processed in this way. A good agreement between FEM and experimental results was obtained. It is this aspect of performing the wear tests on functional and real mechanical components, and not on laboratory samples, which makes this present research work novel.