Matías Maestro, Ignacio
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Matías Maestro
First Name
Ignacio
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access An antibacterial submicron fiber mat with in situ synthesized silver nanoparticles(Wiley, 2012) Rivero Fuente, Pedro J.; Urrutia Azcona, Aitor; Goicoechea Fernández, Javier; Rodríguez, Yoany; Corres Sanz, Jesús María; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2This work presents an alternative approachfor fabricating electrospun submicron highly hydrophilicfiber mats loaded with silver nanoparticles. These fiber matsshow a high efficient antibacterial behavior, very attractivefor applications like wound healing and skin regenerationprocesses. The fabrication method is divided in two steps.First, poly(acrylic acid) (PAA) and b-cyclodextrin (b-CD)submicron fibers were electrospun and further stabilizedusing a thermal treatment, yielding stable hydrogel-likefibers with diameters ranging from 100 nm up to severalmicrons. In the second step, silver ions were loaded into thefibers and then reduced to silver nanoparticles in-situ. Theelectrospinning parameters were adjusted to achieve thedesired properties of the fiber mat (density, size) and after-wards, the characteristics of the silver nanoparticles(amount, size, aggregation) were tuned by controlling thesilver ion loading mechanism. Highly biocide surfaces wereachieved showing more than 99.99% of killing efficiency.The two-step process improves the reproducibility and tun-ability of the fiber mats. To our knowledge, this is the firsttime that stable hydrogel fibers with a highly biocide behav-ior have been fabricated using electrospinning.Publication Open Access Single-stage in situ synthesis of silver nanoparticles in antibacterial self-assembled overlays(Springerlink, 2012) Urrutia Azcona, Aitor; Rivero Fuente, Pedro J.; Ruete Ibarrola, Leyre; Goicoechea Fernández, Javier; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2In this work, a novel single-stage process for in situ synthesis of Ag nanoparticles (NPs) using the layer-bylayer (LbL) technique is presented. The Ag NPs were formed into nanotextured coatings based on sequentially adsorbed poly(allylamine hydrochloride) (PAH) and SiO2 NPs. Such highly porous surfaces have been used in the fabrication of highly efficient ion release films for applications such as antibacterial coatings. In this approach, the amino groups of the PAH acted as reducing agent and made possible the in situ formation of the Ag NPs. This reduction reaction occurred during the LbL process as the coating was assembled, without any further step after the fabrication and stabilization of the multilayer film. Biamminesilver nitrate was used as the Ag+ ion source during the LbL process and it was successfully reduced to Ag NPs. All coatings were tested with gram-positive and gram-negative bacterial cultures of Escherichia coli, Staphylococcus aureus, and Lactobacillus delbrueckii showing an excellent antimicrobial behavior against these types of bacteria (more than 99.9% of killing efficiency in all cases).