Matías Maestro, Ignacio

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Matías Maestro

First Name

Ignacio

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    Deposition of coatings on long-period fiber gratings: tunnel effect analogy
    (Springer, 2006) Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    The sensitivity of Long-period fiber gratings (LPFGs), coated with high-refractive-index thin film overlays, to the refractive index and the thickness of the overlay, and to the ambient refractive index, can be enhanced with a design based on a two-overlay coating of an LPFG. The first overlay of lower refractive index than the cladding affects the guidance of a cladding mode in the second overlay of higher refractive index than the cladding. This causes a more abrupt cladding modal redistribution than with the deposition of a unique high-refractive-index overlay. The phenomenon is analyzed with a method based on a vectorial analysis of modes and the application of coupled mode theory.
  • PublicationOpen Access
    Long period fiber gratings with overlay of variable refractive index
    (IEEE, 2005) Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    A theoretical analysis is presented of a long-period fiber grating (LPFG) with an overlay of variable refractive index. The highest sensitivity of the resonance wavelengths to variations in the refractive index of the overlay can be optimized. There are two key points for a good design: the selection of an overlay refractive index close to that of the cladding of the LPFG and the overlay thickness. The problem is analyzed with a numerical method based on coupled-mode theory.
  • PublicationOpen Access
    Generation of selective fringes with cascaded long-period gratings
    (IEEE, 2006) Del Villar, Ignacio; Achaerandio Alvira, Miguel; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    The inscription of cascaded long-period gratings of different periods in optical fiber permits us to obtain both narrowband and wideband filters in the same spectrum. If used as an optical transducer, it may permit us to detect with the same device- wide and small parameter changes. The transmission spectra have been simulated using a theoretical model based on LP mode coupling and have been also experimentally demonstrated.
  • PublicationOpen Access
    Fiber-optic nanorefractometer based on one-dimensional photonic-bandgap structures with two defects
    (IEEE, 2004) Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    A theoretical analysis of a fiber-optic photonic- bandgap (PBG)-based nanorefractometer is presented. Changes up to 11.2 dB in the optical output power in an index of refraction range of 1.7 with a sensitivity of 1.5 10 4 have been demonstrated. The design is based on a one-dimensional PBG structure with two defects, which originates two defect states inside the bandgap. These states correspond to two localized modes in the defects. By selecting adequate parameters, the frequency of one of the localized modes can be fixed at the same time that its peak amplitude varies with the refractive index of the defect associated to the other localized mode. The refractive index of the defect associated to the localized mode that has been fixed in frequency remains constant. This enables a detection scheme based on a simple photodetector instead of an optical spectrum analyzer, as usual. The thickness of the defect whose refractive index varies determines the variation range of the transmitted power amplitude peak of the localized mode fixed at a concrete frequency. In addition, an analysis of the nonlinear dependence on the refractive index of the peak-transmitted power of the localized mode fixed at a concrete frequency is presented.