Matías Maestro, Ignacio

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Matías Maestro

First Name

Ignacio

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 1 of 1
  • PublicationOpen Access
    A comprehensive study of optical resonances in metals, dielectrics, and excitonic materials in double interface structures
    (Elsevier, 2025-02-01) Imas González, José Javier; Matías Maestro, Ignacio; Del Villar, Ignacio; Ozcariz Celaya, Aritz; Vitoria Pascual, Ignacio; Ruiz Zamarreño, Carlos; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    From an optical perspective, depending on the relationship between the real (n) and imaginary (k) parts of its refractive index, three broad categories of materials can be distinguished: metals (k ¿ n), dielectrics (n ¿ k), and materials in which n ¿ k (termed here excitonic materials). The modes and optical resonances that appear in a thin film bounded by two dielectrics with similar refractive index, what we call here a double interface structure, have been widely studied in the case of metals, but not for dielectrics, or materials with n ¿ k. In this work, we propose a new approach, based on employing the phase matching condition to correlate the resonances that appear in the wavelength versus incident angle color maps of the reflected power with the modal analysis of the cross section of the structure. This analysis is performed, using an attenuated total reflection (ATR) setup, for thin film materials that belong to each of the mentioned categories: a metal (gold, Au), a dielectric (titanium dioxide, TiO2), and a material with n ¿ k (chromium, Cr). The theoretical analysis is supported with experimental results. It is demonstrated that this method enables to identify any resonance at any wavelength or incident angle, being valid for all three types of materials. Therefore, it is considered the suggested approach will help the research in these materials and in the double interface structure in the optics and photonics field.