Matías Maestro, Ignacio

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Matías Maestro

First Name

Ignacio

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 5 of 5
  • PublicationOpen Access
    Mode transitions and thickness measurements during deposition of nanoscale TiO2 coatings on tilted fiber Bragg gratings
    (IEEE, 2022) Imas González, José Javier; Albert, Jacques; Del Villar, Ignacio; Ozcariz Celaya, Aritz; Ruiz Zamarreño, Carlos; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    The mode transition is a phenomenon observed in thin film coated long period fiber gratings (LPGs) and singlemode multimode single-mode (SMS) fibers for certain values of the coating thickness and refractive index, resulting in increased sensitivity for sensing applications. It is shown here that mode transitions occur simultaneously for a large number of mode resonances in the transmission spectra of tilted fiber Bragg gratings (TFBG) measured during the deposition of ~350nm thick TiO2 coatings by Atomic Layer Deposition (ALD). In TFBGs, the mode transition shows up as an acceleration of the resonance wavelength shift vs thickness, but without fading of the resonance amplitude. Furthermore, the results show that the mode transition for cladding modes with predominantly “TE” polarization at the cladding boundary is significantly sharper than that of predominantly “TM” polarized modes and that it occurs at a smaller coating thickness (<100 nm vs >200 nm). Finally, using a separately determined coating refractive index (2.14, by ellipsometry on witness flats deposited simultaneously) and simulations of the resonance shifts of the TFBG with coating thickness, it is demonstrated that a TFBG connected to a spectral interrogation system can be used to measure the growth of a coating on the surface of the fiber in real time.
  • PublicationOpen Access
    Pyridine vapors detection by an optical fibre sensor
    (MDPI, 2008) Elosúa Aguado, César; Bariáin Aisa, Cándido; Matías Maestro, Ignacio; Rodríguez, Antonio; Colacio, Enrique; Salinas Castillo, Alfonso; Segura Carretero, Antonio; Fernández Gutiérrez, Alberto; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    An optical fibre sensor has been implemented towards pyridine vapors detection; to achieve this, a novel vapochromic material has been used, which, in solid state, suffers a change in colour from blue to pink-white in presence of pyridine vapours. This complex is added to a solution of PVC (Poly Vinyl Chloride), TBP (Tributylphosphate) and tetrahydrofuran (THF), forming a plasticized matrix; by dip coating technique, the sensing material is fixed onto a cleaved ended optical fibre. The fabrication process was optimized in terms of number of dips and dipping speed, evaluating the final devices by dynamic range. Employing a reflection set up, the absorbance spectra and changes in the reflected optical power of the sensors were registered to determine their response. A linear relation between optical power versus vapor concentration was obtained, with a detection limit of 1 ppm (v/v).
  • PublicationOpen Access
    Low-cost online monitoring system for the etching process in fiber optic sensors by computer vision
    (MDPI, 2023) Rodríguez Rodríguez, Wenceslao Eduardo; Puente-Sujo, Jesús Abraham; Rodríguez Rodríguez, Adolfo Josué; Matías Maestro, Ignacio; Vargas Requena, Dávid Tomás; García-Garza, Luis Antonio; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    The present research exposes a novel methodology to manufacture fiber optic sensors following the etching process by Hydrofluoric Acid deposition through a real-time monitoring diameter measurement by computer vision. This is based on virtual instrumentation developed with the National Instruments® technology and a conventional digital microscope. Here, the system has been tested proving its feasibility by the SMS structure diameter reduction from its original diameter of 125 µ until approximately 42.5 µm. The results obtained have allowed us to demonstrate a stable state behavior of the developed system during the etching process through diameter measurement at three different structure sections. Therefore, this proposal will contribute to the etched fiber optic sensor development that requires reaching an enhanced sensitivity. Finally, to demonstrate the previously mentioned SMS without chemical corrosion, and the etched manufactured SMS, both have been applied as glucose concentration sensors.
  • PublicationOpen Access
    Development of an in-fiber nanocavity towards detection of volatile organic gases
    (MDPI, 2006) Elosúa Aguado, César; Matías Maestro, Ignacio; Bariáin Aisa, Cándido; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    A fiber optic sensor for Volatile Organic Compounds (VOCs) detection has been developed and characterized for some organic gasses. The sensor is based on a novel vapochromic material, which is able to change its optical properties in presence of organic vapors in a reversely way. A nano Fabry Perot is constructed onto a cleaved ended optical fiber pigtail by Electrostatic Self Assembly method (ESA), doping this structure with the vapochromic material. Employing a reflection scheme, a change in the intensity modulated reflected signal at 850 nm have been registered. The response of the sensor has been evaluated for five different VOCs, and a deeper study has been made for vapors of three different alcohols.
  • PublicationOpen Access
    Advances in sensors using lossy mode resonances
    (SPIE, 2023-11-27) Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    Lossy mode resonance (LMR) is a phenomenon that is observed in the optical spectrum when a mode that progresses through a waveguide starts to be guided in a thin film deposited on this waveguide under certain conditions, mainly related to materials and angles of incidence. An important property that LMRs have is that they can be guided into the thin film with both magnetic (TM) and electrical (TE) polarized light, unlike the other two main types of optical resonances with the same modus operandi that complete this trilogy, surface plasmon resonances (SPRs) and surface exciton plasmon resonances (SEPR). Regarding the potential materials that make up thin films, they include dielectrics suchs as metal oxides such as titanium dioxide (TiO2), zinc oxide (ZnO), tin oxide (SnO2) or polymers. In all cases it must be fulfilled that the real part of the refractive index must be greater than its imaginary part, unlike also the SPR and SEPR. As for the angles of incidence, they must be close to 90º, which explains the success of deposition of thin films around an optical fiber to obtain sensors based on LMR, although interesting results have recently been obtained using planar waveguides. This work will present the main milestones obtained during more than a decade using LMR-based sensors for the detection of multiple parameters. Among these interesting aspects, we can mention the sensitivity records achieved, hybridization with other sensing technologies or the possibility of multiplexing multiple sensors on the same substrate, just to mention a few.