Ochoa Lezaun, Gustavo

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Ochoa Lezaun

First Name

Gustavo

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Interval-valued Atanassov intuitionistic OWA aggregations using admissible linear orders and their application to decision making
    (IEEE, 2016) Miguel Turullols, Laura de; Bustince Sola, Humberto; Pekala, Barbara; Bentkowska, Urszula; Silva, Ivanoska da; Bedregal, Benjamin; Mesiar, Radko; Ochoa Lezaun, Gustavo; Automatika eta Konputazioa; Matematika; Institute of Smart Cities - ISC; Automática y Computación; Matemáticas
    Based on the definition of admissible order for interval-valued Atanassov intuitionistic fuzzy sets, we study OWA operators in these sets distinguishing between the weights associated to the membership and those associated to the nonmembership degree which may differ from the latter. We also study Choquet integrals for aggregating information which is represented using interval-valued Atanassov intuitionistic fuzzy sets. We conclude with two algorithms to choose the best alternative in a decision making problem when we use this kind of sets to represent information.
  • PublicationOpen Access
    The interval-valued Choquet integral based on admissible permutations
    (IEEE, 2018) Paternain Dallo, Daniel; Miguel Turullols, Laura de; Ochoa Lezaun, Gustavo; Lizasoain Iriso, María Inmaculada; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Aggregation or fusion of interval data is not a trivial task, since the necessity of arranging data arises in many aggregation functions, such as OWA operators or the Choquet integral. Some arranging procedures have been given to solve this problem, but they need certain parameters to be set. In order to solve this problem, in this work we propose the concept of an admissible permutation of intervals. Based on this concept, which avoids any parameter selection, we propose a new approach for the interval-valued Choquet integral that takes into account every possible permutation fitting to the considered ordinal structure of data. Finally, a consensus among all the permutations is constructed.