López Maestresalas, Ainara

Loading...
Profile Picture

Email Address

person.page.identifierURI

Birth Date

Job Title

Last Name

López Maestresalas

First Name

Ainara

person.page.departamento

Ingeniería

person.page.instituteName

IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    A review of the application of near-infrared spectroscopy for the analysis of potatoes
    (American Chemical Society, 2013) López Maestresalas, Ainara; Arazuri Garín, Silvia; García Ruiz, Ignacio; Mangado Ederra, Jesús; Jarén Ceballos, Carmen; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak; Gobierno de Navarra / Nafarroako Gobernua
    Potato (Solanum tuberosum L.) is one of the most important crops in the world being considered as a staple food in many developing countries. The potato industry like other vegetable and fruit industries is subject to the current demand of quality products. In order to meet this challenge, the food industry is relying on the adoption of nondestructive and environmentally friendly techniques to determine quality of products. Near-infrared spectroscopy (NIRS) is currently one of the most advanced nondestructive technologies regarding instrumentation and application, and it also complies with the environment requirements as it does not generate emissions or waste. This paper reviews research progress on the analysis of potatoes by NIRS both in terms of determination of constituents and classification according to the different constituents of the tubers. A brief description of the fundamentals of NIRS technology and its advantages over other quality assessment techniques is included. Finally, future prospects of the development of NIRS technology at the industrial level are explored.
  • PublicationOpen Access
    Mapping acrylamide content in potato chips using near-infrared hyperspectral imaging and chemometrics
    (Elsevier, 2025-03-14) Peraza Alemán, Carlos Miguel; López Maestresalas, Ainara; Jarén Ceballos, Carmen; Ruiz de Galarreta, José Ignacio; Barandalla, Leire; Arazuri Garín, Silvia; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD
    This study investigated the potential of near-infrared hyperspectral imaging (NIR-HSI) for the prediction of acrylamide content in potato chips. A total of 300 tubers from two potato varieties (Agria and Jaerla) grown in two seasons and processed under the same frying conditions were analysed. Partial Least Square Regression (PLSR) and Support Vector Machine Regression (SVMR), combined with a logarithmic transformation of the acrylamide levels, were applied to develop predictive models. The most optimal outcomes for PLSR yielded R2 p: 0.85, RMSEP: 201 μg/kg and RPD: 2.53, while for SVMR yielded R2 p: 0.80, RMSEP: 229 μg/kg and RPD: 2.22. Furthermore, the selection of significant wavelengths enabled an 87.95 % reduction in variables without affecting the model’s accuracy. Finally, spatial mapping of acrylamide content was conducted on all chips in the external validation set. This method provides both quantification and visualization capabilities, thus enhancing quality control for acrylamide identification in processed potatoes.
  • PublicationOpen Access
    Non-destructive detection of blackspot in potatoes by Vis-NIR and SWIR hyperspectral imaging
    (Elsevier, 2016) López Maestresalas, Ainara; Keresztes, Janos C.; Goodarzi, Mohammad; Arazuri Garín, Silvia; Jarén Ceballos, Carmen; Saeys, Wouter; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Blackspot is a subsurface potato damage resulting from impacts during harvesting. This type of bruising represents substantial economic losses every year. As the tubers do not show external symptoms, bruise detection in potatoes is not straightforward. Therefore, a nondestructive and accurate method capable of identifying bruised tubers is needed. Hyperspectral imaging (HSI) has been shown to be able to detect other subsurface defects such as bruises in apples. This method is nondestructive, fast and can be fully automated. Therefore, its potential for non-destructive detection of blackspot in potatoes has been investigated in this study. Two HSI setups were used, one ranging from 400 to 1000 nm, named VisibleNear Infrared (Vis-NIR) and another covering the 1000e2500 nm range, called Short Wave Infrared (SWIR). 188 samples belonging to 3 different varieties were divided in two groups. Bruises were manually induced and samples were analyzed 1, 5, 9 and 24 h after bruising. PCA, SIMCA and PLS-DA were used to build classifiers. The PLS-DA model performed better than SIMCA, achieving an overall correct classification rate above 94% for both hyperspectral setups. Furthermore, more accurate results were obtained with the SWIR setup at the tuber level (98.56 vs. 95.46% CC), allowing the identification of early bruises within 5 h after bruising. Moreover, the pixel based PLS- DA model achieved better results in the SWIR setup in terms of correctly classified samples (93.71 vs. 90.82% CC) suggesting that it is possible to detect blackspot areas in each potato tuber with high accuracy.
  • PublicationOpen Access
    A systematized review on the applications of hyperspectral imaging for quality control of potatoes
    (Springer, 2024) Peraza Alemán, Carlos Miguel; López Maestresalas, Ainara; Jarén Ceballos, Carmen; Rubio Padilla, Niuton; Arazuri Garín, Silvia; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The application of hyperspectral imaging (HSI) has gained signifcant importance in the past decade, particulary in the context of food analysis, including potatoes. However, the current literature lacks a comprehensive systematic review of the application of this technique in potato cultivation. Therefore, the aim of this work was to conduct a systematized review by analysing the most relevant compounds, diseases and stress factors in potatoes using hyperspectral imaging. For this purpose, scientifc studies were retrieved through a systematic keyword search in Web of Science and Scopus databases. Studies were only included in the review if they provided at least one set of quantitative data. As a result, a total of 52 unique studies were included in the review. Eligible studies were assigned an in-house developed quality scale identifying them as high, medium or low risk. In most cases the studies were rated as low risk. Finally, a comprehensive overview of the HSI applications in potatoes was performed. It has been observed that most of the selected studies obtained better results using linear methods. In addition, a meta-analysis of studies based on regression and classifcation was attempted but was not possible as not enough studies were found for a specifc variable.